Greene James, Lavi Orit, Gottesman Michael M, Levy Doron
Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, 20742, USA.
Bull Math Biol. 2014 Mar;76(3):627-53. doi: 10.1007/s11538-014-9936-8. Epub 2014 Feb 20.
In this paper we develop a mathematical framework for describing multidrug resistance in cancer. To reflect the complexity of the underlying interplay between cancer cells and the therapeutic agent, we assume that the resistance level is a continuous parameter. Our model is written as a system of integro-differential equations that are parameterized by the resistance level. This model incorporates the cell density and mutation dependence. Analysis and simulations of the model demonstrate how the dynamics evolves to a selection of one or more traits corresponding to different levels of resistance. The emerging limit distribution with nonzero variance is the desirable modeling outcome as it represents tumor heterogeneity.
在本文中,我们开发了一个用于描述癌症多药耐药性的数学框架。为了反映癌细胞与治疗剂之间潜在相互作用的复杂性,我们假设耐药水平是一个连续参数。我们的模型被写成一个由耐药水平参数化的积分 - 微分方程组。该模型纳入了细胞密度和突变依赖性。对该模型的分析和模拟表明了动力学如何演变为对一种或多种对应于不同耐药水平的特征的选择。具有非零方差的新兴极限分布是理想的建模结果,因为它代表了肿瘤异质性。