Suppr超能文献

蛋白质结构域相互作用网络中的拓扑结构和权重——一种预测蛋白质相互作用的新方法。

Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

作者信息

Wuchty Stefan

机构信息

Northwestern Institute on Complexity, Northwestern University, 600 Foster Street, Evanston, IL 60208, USA.

出版信息

BMC Genomics. 2006 May 23;7:122. doi: 10.1186/1471-2164-7-122.

Abstract

BACKGROUND

While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well.

RESULTS

We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation.

CONCLUSION

Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions by utilizing expectation scores of single domain interactions.

摘要

背景

虽然对诸如遗传、蛋白质和代谢网络等未加权的生物网络进行分析,能让我们对细胞的内部运作有惊人的洞察,但生物网络不仅由其静态的连接网格决定。事实上,我们预计连接利用的异质性对细胞活动的组织也有重大影响。

结果

我们考虑了蛋白质家族数据库(PFAM)中蛋白质结构域之间的相互作用网络,这些相互作用由概率得分加权。我们应用结合了静态布局和潜在相互作用权重的指标。我们观察到,未加权的测量方法及其加权对应方法在潜在的结构域相互作用网络中大体上具有相同的趋势。然而,我们只发现了微弱的信号表明权重和相互作用的静态网格是相关联的实体。因此,假设蛋白质相互作用由单个结构域相互作用控制,我们观察到在酵母和果蝇的潜在相互作用中,得分最高的结构域相互作用与蛋白质相互作用的可信度之间存在强烈且显著的相关性。如果我们发现高分的蛋白质结构域相互作用,对蛋白质之间的相互作用进行建模,在人类疟原虫恶性疟原虫的361种蛋白质中,我们获得了1428种蛋白质相互作用。通过逻辑回归方法评估它们的质量,我们观察到预测相互作用可信度的提高伴随着高分的结构域相互作用以及功能相似性和进化保守性水平的提高。

结论

我们的结果表明概率得分是随机分布的,这使得可以将结构域相互作用的静态网格和权重视为独立的实体。特别是,这些发现证实了早期的观察结果,即蛋白质相互作用是结构域水平上单个相互作用事件的问题。作为一个直接应用,我们展示了一种利用单个结构域相互作用的期望得分来预测潜在蛋白质相互作用的简单方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7502/1523346/5d9c97ae098a/1471-2164-7-122-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验