Suppr超能文献

应用计算决策模型研究急性药物对人类冒险行为的影响。

Application of a computational decision model to examine acute drug effects on human risk taking.

作者信息

Lane Scott D, Yechiam Eldad, Busemeyer Jerome R

机构信息

Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 77030, USA.

出版信息

Exp Clin Psychopharmacol. 2006 May;14(2):254-64. doi: 10.1037/1064-1297.14.2.254.

Abstract

In 3 previous experiments, high doses of alcohol, marijuana, and alprazolam acutely increased risky decision making by adult humans in a 2-choice (risky vs. nonrisky) laboratory task. In this study, a computational modeling analysis known as the expectancy valence model (J. R. Busemeyer & J. C. Stout, 2002) was applied to individual-participant data from these studies, for the highest administered dose of all 3 drugs and corresponding placebo doses, to determine changes in decision-making processes that may be uniquely engendered by each drug. The model includes 3 parameters: responsiveness to rewards and losses (valence or motivation); the rate of updating expectancies about the value of risky alternatives (learning/memory); and the consistency with which trial-by-trial choices match expected outcomes (sensitivity). Parameter estimates revealed 3 key outcomes: Alcohol increased responsiveness to risky rewards and decreased responsiveness to risky losses (motivation) but did not alter expectancy updating (learning/memory); both marijuana and alprazolam produced increases in risk taking that were related to learning/memory but not motivation; and alcohol and marijuana (but not alprazolam) produced more random response patterns that were less consistently related to expected outcomes on the 2 choices. No significant main effects of gender or dose by gender interactions were obtained, but 2 dose by gender interactions approached significance. These outcomes underscore the utility of using a computational modeling approach to deconstruct decision-making processes and thus better understand drug effects on risky decision making in humans.

摘要

在之前的3项实验中,高剂量的酒精、大麻和阿普唑仑在一项二选一(风险与非风险)实验室任务中,会使成年人的风险决策急性增加。在本研究中,一种名为期望效价模型(J.R. 布塞迈尔和J.C. 斯托特,2002年)的计算建模分析被应用于这些研究中的个体参与者数据,针对所有3种药物的最高给药剂量以及相应的安慰剂剂量,以确定每种药物可能独特引发的决策过程变化。该模型包括3个参数:对奖励和损失的反应性(效价或动机);更新对风险选择价值期望的速率(学习/记忆);以及逐次试验选择与预期结果匹配的一致性(敏感性)。参数估计揭示了3个关键结果:酒精增加了对风险奖励的反应性,降低了对风险损失的反应性(动机),但没有改变期望更新(学习/记忆);大麻和阿普唑仑都导致了与学习/记忆相关而非动机相关的冒险行为增加;酒精和大麻(但不是阿普唑仑)产生了更多随机反应模式,这些模式与二选一选择的预期结果的一致性较低。未获得性别或剂量与性别交互作用的显著主效应,但有2个剂量与性别交互作用接近显著。这些结果强调了使用计算建模方法来解构决策过程,从而更好地理解药物对人类风险决策影响的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验