Suppr超能文献

基于动态权重模糊连通性的图像分割

Image segmentation based on fuzzy connectedness using dynamic weights.

作者信息

Pednekar Amol S, Kakadiaris Ioannis A

机构信息

MR Clinical Science group, Philips Medical Systems North America, Bothell, WA 98021, USA.

出版信息

IEEE Trans Image Process. 2006 Jun;15(6):1555-62. doi: 10.1109/tip.2006.871165.

Abstract

Traditional segmentation techniques do not quite meet the challenges posed by inherently fuzzy medical images. Image segmentation based on fuzzy connectedness addresses this problem by attempting to capture both closeness, based on characteristic intensity, and "hanging togetherness," based on intensity homogeneity, of image elements to the target object. This paper presents a modification and extension of previously published image segmentation algorithms based on fuzzy connectedness, which is computed as a linear combination of an object-feature-based and a homogeneity-based component using fixed weights. We provide a method, called fuzzy connectedness using dynamic weights (DyW), to introduce directional sensitivity to the homogeneity-based component and to dynamically adjust the linear weights in the functional form of fuzzy connectedness. Dynamic computation of the weights relieves the user of the exhaustive search process to find the best combination of weights suited to a particular application. This is critical in applications such as analysis of cardiac cine magnetic resonance (MR) images, where the optimal combination of affinity component weights can vary for each slice, each phase, and each subject, in spite of data being acquired from the same MR scanner with identical protocols. We present selected results of applying DyW to segment phantom images and actual MR, computed tomography, and infrared data. The accuracy of DyW is assessed by comparing it to two different formulations of fuzzy connectedness. Our method consistently achieves accuracy of more than 99.15% for a range of image complexities: contrast 5%-65%, noise-to-contrast ratio of 6%-18%, and bias field of four types with maximum gain factor of up to 10%.

摘要

传统的分割技术并不能很好地应对本质上模糊的医学图像所带来的挑战。基于模糊连通性的图像分割通过尝试捕捉图像元素与目标对象之间基于特征强度的接近度以及基于强度均匀性的“连贯性”来解决这一问题。本文提出了对先前发表的基于模糊连通性的图像分割算法的一种改进和扩展,该算法是使用固定权重将基于对象特征的分量和基于均匀性的分量进行线性组合来计算的。我们提供了一种称为动态权重模糊连通性(DyW)的方法,以引入对基于均匀性的分量的方向敏感性,并以模糊连通性的函数形式动态调整线性权重。权重的动态计算使用户无需进行详尽的搜索过程来找到适合特定应用的最佳权重组合。这在诸如心脏电影磁共振(MR)图像分析等应用中至关重要,在这些应用中,尽管数据是使用相同协议从同一MR扫描仪获取的,但亲和力分量权重的最佳组合可能因每个切片、每个相位和每个受试者而异。我们展示了将DyW应用于分割体模图像以及实际的MR、计算机断层扫描和红外数据的选定结果。通过将DyW与模糊连通性的两种不同公式进行比较来评估其准确性。对于一系列图像复杂度:对比度5% - 65%、噪声与对比度之比6% - 18%以及四种类型的偏置场,最大增益因子高达10%,我们的方法始终能实现超过99.15%的准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验