Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
Neuroimage. 2019 Dec;203:116165. doi: 10.1016/j.neuroimage.2019.116165. Epub 2019 Sep 5.
We introduce an approach to reconstruction of simultaneous multi-slice (SMS)-fMRI data that improves statistical efficiency. The method incorporates regularization to adjust temporal smoothness in a spatially varying, encoding-dependent manner, reducing the g-factor noise amplification per temporal degree of freedom. This results in a net improvement in tSNR and GLM efficiency, where the efficiency gain can be derived analytically as a function of the encoding and reconstruction parameters. Residual slice leakage and aliasing is limited when fMRI signal energy is dominated by low frequencies. Analytical predictions, simulated and experimental results demonstrate a marked improvement in statistical efficiency in the temporally regularized reconstructions compared to conventional slice-GRAPPA reconstructions, particularly in central brain regions. Furthermore, experimental results confirm that residual slice leakage and aliasing errors are not noticeably increased compared to slice-GRAPPA reconstruction. This approach to temporally regularized image reconstruction in SMS-fMRI improves statistical power, and allows for explicit choice of reconstruction parameters by directly assessing their impact on noise variance per degree of freedom.
我们介绍了一种同时多层面(SMS)-fMRI 数据重建方法,该方法可以提高统计效率。该方法结合了正则化,以空间变化、编码相关的方式调整时间平滑度,从而降低每个时间自由度的 g 因子噪声放大。这导致 tSNR 和 GLM 效率的净提高,其中效率增益可以作为编码和重建参数的函数进行分析。当 fMRI 信号能量主要由低频主导时,残留的切片泄漏和混叠被限制。分析预测、模拟和实验结果表明,与传统的切片-GRAPPA 重建相比,在时间正则化重建中,统计效率得到了显著提高,特别是在大脑中央区域。此外,实验结果证实,与切片-GRAPPA 重建相比,残留的切片泄漏和混叠误差没有明显增加。这种用于 SMS-fMRI 的时间正则化图像重建方法提高了统计能力,并允许通过直接评估它们对每个自由度的噪声方差的影响来明确选择重建参数。