Suppr超能文献

使用库尔贝克-莱布勒散度平衡治疗组和对照组之间连续预后变量的最小化方法。

Minimization method for balancing continuous prognostic variables between treatment and control groups using Kullback-Leibler divergence.

作者信息

Endo Akira, Nagatani Fumio, Hamada Chikuma, Yoshimura Isao

机构信息

Biomedical Data Sciences Department, GlaxoSmithKline K.K., Tokyo, Japan.

出版信息

Contemp Clin Trials. 2006 Oct;27(5):420-31. doi: 10.1016/j.cct.2006.05.002. Epub 2006 May 20.

Abstract

This paper proposes a method for balancing prognostic variables between treatment and control groups in design of clinical trials. It assumes that some of prognostic variables are continuous and others are categorical and that they are independently distributed. The proposed method uses the Kullback-Leibler divergence (KLD) as the index of difference in distribution between two groups. It sequentially allocates each subject to a group using a biased coin method so as to reduce the estimate of KLD. That is, when first i subjects have been allocated to two groups and the (i+1)th subject is enrolled, the KLD is estimated if the (i+1)th subject was to be allocated to either of the groups, and the subject is then allocated with a certain probability, e.g. 0.80, so as to make the KLD small. Simulation studies based on the hypothetical prognostic variables and on the actual data of hyperlipidemia patients were carried out in order to compare the proposed method with the Pocock-Simon method, which transforms the continuous prognostic variables into categorical variables by dividing the whole scale into several categories. The p values of homogeneity test of means and variances were used to evaluate the achieved balance. The observed p values in the proposed method were better than those in the Pocock-Simon method. In addition to the balance, the precision of parameter estimates assuming analysis of covariance model was examined. The results showed the precision of estimators tended to be more stable in the proposed method than the Pocock-Simon method.

摘要

本文提出了一种在临床试验设计中平衡治疗组和对照组之间预后变量的方法。该方法假设一些预后变量是连续的,另一些是分类的,并且它们是独立分布的。所提出的方法使用Kullback-Leibler散度(KLD)作为两组之间分布差异的指标。它使用偏倚硬币法将每个受试者依次分配到一个组中,以减少KLD的估计值。也就是说,当最初的i个受试者被分配到两组,并且第(i + 1)个受试者被纳入时,如果第(i + 1)个受试者被分配到任何一组,则估计KLD,然后以一定的概率(例如0.80)分配该受试者,以使KLD变小。为了将所提出的方法与Pocock-Simon方法进行比较,基于假设的预后变量和高脂血症患者的实际数据进行了模拟研究,Pocock-Simon方法是通过将整个范围划分为几个类别将连续的预后变量转换为分类变量。均值和方差齐性检验的p值用于评估所实现的平衡。所提出方法中观察到的p值优于Pocock-Simon方法。除了平衡之外,还检验了假设协方差分析模型时参数估计的精度。结果表明,所提出的方法中估计量的精度比Pocock-Simon方法更趋于稳定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验