Kim So Yeon, Gitai Zemer, Kinkhabwala Anika, Shapiro Lucy, Moerner W E
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10929-34. doi: 10.1073/pnas.0604503103. Epub 2006 Jul 7.
The actin cytoskeleton represents a key regulator of multiple essential cellular functions in both eukaryotes and prokaryotes. In eukaryotes, these functions depend on the orchestrated dynamics of actin filament assembly and disassembly. However, the dynamics of the bacterial actin homolog MreB have yet to be examined in vivo. In this study, we observed the motion of single fluorescent MreB-yellow fluorescent protein fusions in living Caulobacter cells in a background of unlabeled MreB. With time-lapse imaging, polymerized MreB [filamentous MreB (fMreB)] and unpolymerized MreB [globular MreB (gMreB)] monomers could be distinguished: gMreB showed fast motion that was characteristic of Brownian diffusion, whereas the labeled molecules in fMreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill through MreB filaments by preferential polymerization at one filament end and depolymerization at the other filament end. From these data, we extract several characteristics of single MreB filaments, including that they are, on average, much shorter than the cell length and that the direction of their polarized assembly seems to be independent of the overall cellular polarity. Thus, MreB, like actin, exhibits treadmilling behavior in vivo, and the long MreB structures that have been visualized in multiple bacterial species seem to represent bundles of short filaments that lack a uniform global polarity.
肌动蛋白细胞骨架是真核生物和原核生物中多种基本细胞功能的关键调节因子。在真核生物中,这些功能依赖于肌动蛋白丝组装和解聚的协调动态变化。然而,细菌肌动蛋白同源物MreB的动态变化尚未在体内进行研究。在本研究中,我们在未标记MreB的背景下,观察了活的柄杆菌细胞中单个荧光MreB-黄色荧光蛋白融合体的运动。通过延时成像,可以区分聚合的MreB[丝状MreB(fMreB)]和未聚合的MreB[球状MreB(gMreB)]单体:gMreB表现出快速运动,这是布朗扩散的特征,而fMreB中标记的分子则表现出缓慢的定向运动。标记的MreB在生长聚合物中的这种定向运动表明,与肌动蛋白一样,MreB单体通过在一个丝端优先聚合而在另一个丝端解聚,从而在MreB丝上进行踏车运动。从这些数据中,我们提取了单个MreB丝的几个特征,包括它们平均比细胞长度短得多,以及它们极化组装的方向似乎与整体细胞极性无关。因此,MreB与肌动蛋白一样,在体内表现出踏车行为,并且在多种细菌物种中可视化的长MreB结构似乎代表了缺乏统一全局极性的短丝束。