Curutchet Carles, Bidon-Chanal Axel, Soteras Ignaci, Orozco Modesto, Luque F Javier
Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda, Diagonal 643, Barcelona 08028, Spain.
J Phys Chem B. 2005 Mar 3;109(8):3565-74. doi: 10.1021/jp047197s.
In this study, we revisit the protocol previously proposed within the framework of the Miertus-Scrocco-Tomasi (MST) continuum model to define the cavity between the solute and solvent for predicting hydration free energies of univalent ions. The protocol relies on the use of a reduced cavity (around 10-15% smaller than the cavity used for neutral compounds) around the atom(s) bearing the formal charge. The suitability of this approach is examined here for a series of 47 univalent ions for which accurate experimental hydration free energies are available. Attention is also paid to the effect of the charge renormalization protocol used to correct uncertainties arising from the electron density located outside the solute cavity. The method presented here provides, with a minimum number of fitted parameters, reasonable estimates within the experimental error of the hydration free energy of ions (average relative error of 4.7%) and is able to reproduce solvation in water of both small and large ions.
在本研究中,我们重新审视了先前在Miertus-Scrocco-Tomasi(MST)连续介质模型框架内提出的协议,该协议用于定义溶质和溶剂之间的空腔,以预测单价离子的水合自由能。该协议依赖于在带有形式电荷的原子周围使用缩小的空腔(比用于中性化合物的空腔小约10 - 15%)。本文针对一系列47种单价离子检验了这种方法的适用性,这些离子具有准确的实验水合自由能数据。同时还关注了用于校正溶质空腔外电子密度产生的不确定性的电荷重整化协议的影响。本文提出的方法以最少数量的拟合参数,在离子水合自由能的实验误差范围内提供了合理的估计(平均相对误差为4.7%),并且能够重现小离子和大离子在水中的溶剂化情况。