Suppr超能文献

VOTENET++:多图谱分割的配准优化

VOTENET++: REGISTRATION REFINEMENT FOR MULTI-ATLAS SEGMENTATION.

作者信息

Ding Zhipeng, Niethammer Marc

机构信息

Department of Computer Science, UNC Chapel Hill, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:275-279. doi: 10.1109/isbi48211.2021.9434031. Epub 2021 May 25.

Abstract

Multi-atlas segmentation (MAS) is a popular image segmentation technique for medical images. In this work, we improve the performance of MAS by correcting registration errors before label fusion. Specifically, we use a volumetric displacement field to refine registrations based on image anatomical appearance and predicted labels. We show the influence of the initial spatial alignment as well as the beneficial effect of using label information for MAS performance. Experiments demonstrate that the proposed refinement approach improves MAS performance on a 3D magnetic resonance dataset of the knee.

摘要

多图谱分割(MAS)是一种用于医学图像的流行图像分割技术。在这项工作中,我们通过在标签融合之前校正配准误差来提高MAS的性能。具体而言,我们使用体积位移场基于图像解剖外观和预测标签来优化配准。我们展示了初始空间对齐的影响以及使用标签信息对MAS性能的有益效果。实验表明,所提出的优化方法在膝关节的三维磁共振数据集上提高了MAS的性能。

相似文献

1
VOTENET++: REGISTRATION REFINEMENT FOR MULTI-ATLAS SEGMENTATION.VOTENET++:多图谱分割的配准优化
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:275-279. doi: 10.1109/isbi48211.2021.9434031. Epub 2021 May 25.
2
VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.VoteNet:一种用于多图谱分割的深度学习标签融合方法。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:202-210. doi: 10.1007/978-3-030-32248-9_23. Epub 2019 Oct 10.
3
VOTENET+ : AN IMPROVED DEEP LEARNING LABEL FUSION METHOD FOR MULTI-ATLAS SEGMENTATION.VOTENET+:一种用于多图谱分割的改进深度学习标签融合方法。
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:363-367. doi: 10.1109/isbi45749.2020.9098493. Epub 2020 May 22.
4
Cross-Modality Multi-Atlas Segmentation via Deep Registration and Label Fusion.基于深度配准和标签融合的跨模态多图谱分割。
IEEE J Biomed Health Inform. 2022 Jul;26(7):3104-3115. doi: 10.1109/JBHI.2022.3149114. Epub 2022 Jul 1.
8

本文引用的文献

1
DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation.深度图谱:图像配准与分割的联合半监督学习
Med Image Comput Comput Assist Interv. 2019 Oct;11765:420-429. doi: 10.1007/978-3-030-32245-8_47. Epub 2019 Oct 10.
2
VoteNet: A Deep Learning Label Fusion Method for Multi-Atlas Segmentation.VoteNet:一种用于多图谱分割的深度学习标签融合方法。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:202-210. doi: 10.1007/978-3-030-32248-9_23. Epub 2019 Oct 10.
3
VOTENET+ : AN IMPROVED DEEP LEARNING LABEL FUSION METHOD FOR MULTI-ATLAS SEGMENTATION.VOTENET+:一种用于多图谱分割的改进深度学习标签融合方法。
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:363-367. doi: 10.1109/isbi45749.2020.9098493. Epub 2020 May 22.
5
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
6
Multi-atlas segmentation of biomedical images: A survey.生物医学图像的多图谱分割:一项综述。
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
8
Multi-Atlas Segmentation with Joint Label Fusion.基于联合标签融合的多图谱分割
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验