Ding Zhipeng, Niethammer Marc
Department of Computer Science, UNC Chapel Hill, USA.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:275-279. doi: 10.1109/isbi48211.2021.9434031. Epub 2021 May 25.
Multi-atlas segmentation (MAS) is a popular image segmentation technique for medical images. In this work, we improve the performance of MAS by correcting registration errors before label fusion. Specifically, we use a volumetric displacement field to refine registrations based on image anatomical appearance and predicted labels. We show the influence of the initial spatial alignment as well as the beneficial effect of using label information for MAS performance. Experiments demonstrate that the proposed refinement approach improves MAS performance on a 3D magnetic resonance dataset of the knee.
多图谱分割(MAS)是一种用于医学图像的流行图像分割技术。在这项工作中,我们通过在标签融合之前校正配准误差来提高MAS的性能。具体而言,我们使用体积位移场基于图像解剖外观和预测标签来优化配准。我们展示了初始空间对齐的影响以及使用标签信息对MAS性能的有益效果。实验表明,所提出的优化方法在膝关节的三维磁共振数据集上提高了MAS的性能。