Suppr超能文献

蔗糖类似物的合成及枯草芽孢杆菌果糖基转移酶(果聚糖蔗糖酶)的作用机制。

Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase).

作者信息

Seibel Jürgen, Moraru Roxana, Götze Sven, Buchholz Klaus, Na'amnieh Shukrallah, Pawlowski Alice, Hecht Hans-Jürgen

机构信息

Technical University of Braunschweig, Department for Carbohydrate Technology, Hans-Sommer Str. 10, D-38106 Braunschweig, Germany.

出版信息

Carbohydr Res. 2006 Oct 16;341(14):2335-49. doi: 10.1016/j.carres.2006.07.001. Epub 2006 Jul 25.

Abstract

In the present study, we have coupled detailed acceptor and donor substrate studies of the fructosyltransferase (FTF, levansucrase) (EC 2.4.1.162) from Bacillus subtilis NCIMB 11871, with a structural model of the substrate enzyme complex in order to investigate in detail the roles of the active site amino acids in the catalytic action of the enzyme and the scope and limitation of substrates. Therefore we have isolated the ftf gene, expressed in Escherichia coli, yielding a levansucrase. Consequently, detailed acceptor property effects in the fructosylation by systematic variation of glycoside acceptors with respect to the positions (2, 3, 4 and 6) of the hydroxyl groups from equatorial to axial have been studied for preparative scale production of new oligosaccharides. Such investigations provided mechanistic insights of the FTF reaction. The configuration and the presence of the C-2 and C-3 hydroxyl groups of the glucopyranoside derivatives either as substrates or acceptors have been identified to be rate limiting for the trans-fructosylation process. The rates are rationalized on the basis of the coordination of d-glycopyranoside residues in (4)C(1) conformation with a network of amino acids by Arg360, Tyr411, Glu342, Trp85, Asp247 and Arg246 stabilization of both acceptors and substrates. In addition we also describe the first FTF reaction, which catalyzes the beta-(1-->2)-fructosyl transfer to 2-OH of L-sugars (L-glucose, L-rhamnose, L-galactose, L-fucose, L-xylose) presumably in a (1)C(4) conformation. In those conformations, the L-glycopyranosides are stabilized by the same hydrogen network. Structures of the acceptor products were determined by NMR and mass spectrometry analysis.

摘要

在本研究中,我们将来自枯草芽孢杆菌NCIMB 11871的果糖基转移酶(FTF,果聚糖蔗糖酶)(EC 2.4.1.162)的详细受体和供体底物研究与底物-酶复合物的结构模型相结合,以详细研究活性位点氨基酸在酶催化作用中的作用以及底物的范围和局限性。因此,我们分离了ftf基因,并在大肠杆菌中表达,产生了一种果聚糖蔗糖酶。随后,通过系统改变糖苷受体中羟基从赤道向轴向的位置(2、3、4和6),研究了在果糖基化过程中详细的受体性质影响,用于新寡糖的制备规模生产。此类研究提供了FTF反应的机理见解。已确定吡喃葡萄糖苷衍生物作为底物或受体时,C-2和C-3羟基的构型和存在是转果糖基化过程的限速因素。基于d-吡喃糖苷残基以(4)C(1)构象与由Arg360、Tyr411、Glu342、Trp85、Asp247和Arg246稳定受体和底物的氨基酸网络的配位作用,对反应速率进行了合理化解释。此外,我们还描述了首个FTF反应,该反应催化β-(1→2)-果糖基转移至L-糖(L-葡萄糖、L-鼠李糖、L-半乳糖、L-岩藻糖、L-木糖)的2-OH,推测其处于(1)C(4)构象。在这些构象中,L-吡喃糖苷通过相同的氢键网络得以稳定。通过NMR和质谱分析确定了受体产物的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验