Shibasaki Hiroshi, Hallett Mark
Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA.
Clin Neurophysiol. 2006 Nov;117(11):2341-56. doi: 10.1016/j.clinph.2006.04.025. Epub 2006 Jul 28.
Since discovery of the slow negative electroencephalographic (EEG) activity preceding self-initiated movement by Kornhuber and Deecke [Kornhuber HH, Deecke L. Hirnpotentialänderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 1965;284:1-17], various source localization techniques in normal subjects and epicortical recording in epilepsy patients have disclosed the generator mechanisms of each identifiable component of movement-related cortical potentials (MRCPs) to some extent. The initial slow segment of BP, called 'early BP' in this article, begins about 2 s before the movement onset in the pre-supplementary motor area (pre-SMA) with no site-specificity and in the SMA proper according to the somatotopic organization, and shortly thereafter in the lateral premotor cortex bilaterally with relatively clear somatotopy. About 400 ms before the movement onset, the steeper negative slope, called 'late BP' in this article (also referred to as NS'), occurs in the contralateral primary motor cortex (M1) and lateral premotor cortex with precise somatotopy. These two phases of BP are differentially influenced by various factors, especially by complexity of the movement which enhances only the late BP. Event-related desynchronization (ERD) of beta frequency EEG band before self-initiated movements shows a different temporospatial pattern from that of the BP, suggesting different neuronal mechanisms for the two. BP has been applied for investigating pathophysiology of various movement disorders. Volitional motor inhibition or muscle relaxation is preceded by BP quite similar to that preceding voluntary muscle contraction. Since BP of typical waveforms and temporospatial pattern does not occur before organic involuntary movements, BP is used for detecting the participation of the 'voluntary motor system' in the generation of apparently involuntary movements in patients with psychogenic movement disorders. In view of Libet et al.'s report [Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 1983;106:623-642] that the awareness of intention to move occurred much later than the onset of BP, the early BP might reflect, physiologically, slowly increasing cortical excitability and, behaviorally, subconscious readiness for the forthcoming movement. Whether the late BP reflects conscious preparation for intended movement or not remains to be clarified.
自从科尔恩胡伯(Kornhuber)和德克(Deecke)发现自我发起运动之前存在缓慢的脑电图(EEG)负性活动以来[科尔恩胡伯 HH,德克 L。人类随意运动和被动运动时的脑电位变化:准备电位和再传入电位。《 Pflügers 文献》1965 年;284:1 - 17],正常受试者中的各种源定位技术以及癫痫患者的皮质表面记录在一定程度上揭示了运动相关皮质电位(MRCPs)各可识别成分的产生机制。本文中称为“早期 BP”的 BP 初始缓慢段,在运动开始前约 2 秒于辅助运动前区(pre - SMA)开始,无部位特异性,随后根据躯体定位组织在运动辅助区(SMA)本身开始,不久后在双侧外侧运动前皮质开始,具有相对清晰的躯体定位。在运动开始前约 400 毫秒,较陡的负向斜率,即本文中称为“晚期 BP”(也称为 NS'),出现在对侧初级运动皮质(M1)和外侧运动前皮质,具有精确的躯体定位。BP 的这两个阶段受到各种因素的不同影响,尤其是运动复杂性的影响,运动复杂性仅增强晚期 BP。自我发起运动前β频段脑电图的事件相关去同步化(ERD)显示出与 BP 不同的时空模式,表明两者的神经元机制不同。BP 已被用于研究各种运动障碍的病理生理学。意志性运动抑制或肌肉放松之前的 BP 与自愿肌肉收缩之前的 BP 非常相似。由于典型波形和时空模式的 BP 在器质性不自主运动之前不会出现,BP 被用于检测“自主运动系统”在心理性运动障碍患者明显不自主运动产生中的参与情况。鉴于利贝特(Libet)等人报告[利贝特 B,格利森 CA,赖特 EW,珀尔 DK。有意识行动意图的时间与大脑活动(准备电位)开始的关系。自由自愿行为的无意识启动。《大脑》1983 年;106:623 - 642]表明运动意图的意识比 BP 开始晚得多,早期 BP 在生理上可能反映皮质兴奋性的缓慢增加,在行为上可能反映对即将到来运动的潜意识准备。晚期 BP 是否反映对预期运动的有意识准备仍有待阐明。