Suppr超能文献

在电子供体耗尽期间,希登伯勒脱硫弧菌向稳定期转变过程中的时间转录组分析。

Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion.

作者信息

Clark M E, He Q, He Z, Huang K H, Alm E J, Wan X-F, Hazen T C, Arkin A P, Wall J D, Zhou J-Z, Fields M W

机构信息

Department of Microbiology, Miami University, Oxford, OH 45056, USA.

出版信息

Appl Environ Microbiol. 2006 Aug;72(8):5578-88. doi: 10.1128/AEM.00284-06.

Abstract

Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the stationary phase during electron donor depletion. In addition to temporal transcriptomics, total protein, carbohydrate, lactate, acetate, and sulfate levels were measured. The microarray data were examined for statistically significant expression changes, hierarchical cluster analysis, and promoter element prediction and were validated by quantitative PCR. As the cells transitioned from the exponential phase to the stationary phase, a majority of the down-expressed genes were involved in translation and transcription, and this trend continued at the remaining times. There were general increases in relative expression for intracellular trafficking and secretion, ion transport, and coenzyme metabolism as the cells entered the stationary phase. As expected, the DNA replication machinery was down-expressed, and the expression of genes involved in DNA repair increased during the stationary phase. Genes involved in amino acid acquisition, carbohydrate metabolism, energy production, and cell envelope biogenesis did not exhibit uniform transcriptional responses. Interestingly, most phage-related genes were up-expressed at the onset of the stationary phase. This result suggested that nutrient depletion may affect community dynamics and DNA transfer mechanisms of sulfate-reducing bacteria via the phage cycle. The putative feoAB system (in addition to other presumptive iron metabolism genes) was significantly up-expressed, and this suggested the possible importance of Fe2+ acquisition under metal-reducing conditions. The expression of a large subset of carbohydrate-related genes was altered, and the total cellular carbohydrate levels declined during the growth phase transition. Interestingly, the D. vulgaris genome does not contain a putative rpoS gene, a common attribute of the delta-Proteobacteria genomes sequenced to date, and the transcription profiles of other putative rpo genes were not significantly altered. Our results indicated that in addition to expected changes (e.g., energy conversion, protein turnover, translation, transcription, and DNA replication and repair), genes related to phage, stress response, carbohydrate flux, the outer envelope, and iron homeostasis played important roles as D. vulgaris cells experienced electron donor depletion.

摘要

将普通脱硫弧菌在限定培养基中培养,在大约70小时内对生物量进行采样,以表征细胞在电子供体耗尽期间从指数生长期过渡到稳定期时基因表达的变化。除了时间转录组学外,还测量了总蛋白、碳水化合物、乳酸、乙酸盐和硫酸盐水平。对微阵列数据进行统计显著表达变化检查、层次聚类分析和启动子元件预测,并通过定量PCR进行验证。随着细胞从指数生长期过渡到稳定期,大多数下调表达的基因参与翻译和转录,并且这种趋势在剩余时间持续。随着细胞进入稳定期,细胞内运输和分泌、离子运输以及辅酶代谢的相对表达普遍增加。正如预期的那样,DNA复制机制下调表达,而参与DNA修复的基因在稳定期表达增加。参与氨基酸获取、碳水化合物代谢、能量产生和细胞包膜生物合成的基因没有表现出一致的转录反应。有趣的是,大多数与噬菌体相关的基因在稳定期开始时上调表达。这一结果表明,营养物质耗尽可能通过噬菌体循环影响硫酸盐还原细菌的群落动态和DNA转移机制。假定的feoAB系统(以及其他推测的铁代谢基因)显著上调表达,这表明在金属还原条件下获取Fe2+可能具有重要意义。一大类与碳水化合物相关的基因表达发生改变,并且在生长阶段转变期间细胞总碳水化合物水平下降。有趣的是,普通脱硫弧菌基因组不包含假定的rpoS基因,这是迄今为止已测序的δ-变形菌基因组的一个共同特征,并且其他假定的rpo基因的转录谱没有显著改变。我们的结果表明,除了预期的变化(如能量转换、蛋白质周转、翻译、转录以及DNA复制和修复)外,与噬菌体、应激反应、碳水化合物通量、外膜和铁稳态相关的基因在普通脱硫弧菌细胞经历电子供体耗尽时发挥了重要作用。

相似文献

2
Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors.
Antonie Van Leeuwenhoek. 2006 Feb;89(2):221-37. doi: 10.1007/s10482-005-9024-z. Epub 2006 May 5.
4
Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism.
Microbiology (Reading). 2010 Sep;156(Pt 9):2746-2756. doi: 10.1099/mic.0.038539-0. Epub 2010 Jun 24.
6
Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.
J Bacteriol. 2006 Mar;188(5):1817-28. doi: 10.1128/JB.188.5.1817-1828.2006.
7
The electron transfer system of syntrophically grown Desulfovibrio vulgaris.
J Bacteriol. 2009 Sep;191(18):5793-801. doi: 10.1128/JB.00356-09. Epub 2009 Jul 6.
8
Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis.
Antonie Van Leeuwenhoek. 2006 Jul;90(1):41-55. doi: 10.1007/s10482-006-9059-9. Epub 2006 May 6.
9
Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis.
Antonie Van Leeuwenhoek. 2008 May;93(4):347-62. doi: 10.1007/s10482-007-9212-0. Epub 2007 Dec 1.
10
Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions.
Arch Microbiol. 2008 May;189(5):451-61. doi: 10.1007/s00203-007-0335-5. Epub 2007 Dec 5.

引用本文的文献

1
Comparative transcriptomics analysis of the G20 biofilms grown on copper and polycarbonate surfaces.
Biofilm. 2025 Aug 6;10:100309. doi: 10.1016/j.bioflm.2025.100309. eCollection 2025 Dec.
2
Impact of Graphene Layers on Genetic Expression and Regulation within Sulfate-Reducing Biofilms.
Microorganisms. 2024 Aug 24;12(9):1759. doi: 10.3390/microorganisms12091759.
3
Origin of biogeographically distinct ecotypes during laboratory evolution.
Nat Commun. 2024 Aug 28;15(1):7451. doi: 10.1038/s41467-024-51759-y.
4
Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion.
Front Microbiol. 2021 Oct 29;12:754140. doi: 10.3389/fmicb.2021.754140. eCollection 2021.
5
Response to substrate limitation by a marine sulfate-reducing bacterium.
ISME J. 2022 Jan;16(1):200-210. doi: 10.1038/s41396-021-01061-2. Epub 2021 Jul 20.
6
The impact of quorum sensing on the modulation of phage-host interactions.
J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00687-20. Epub 2021 Jan 19.
7
Isotopic Fractionation Associated With Sulfate Import and Activation by str. Hildenborough.
Front Microbiol. 2020 Sep 18;11:529317. doi: 10.3389/fmicb.2020.529317. eCollection 2020.
8
Experimental evolution reveals nitrate tolerance mechanisms in Desulfovibrio vulgaris.
ISME J. 2020 Nov;14(11):2862-2876. doi: 10.1038/s41396-020-00753-5. Epub 2020 Sep 15.
9
LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species.
PLoS One. 2019 Apr 9;14(4):e0214960. doi: 10.1371/journal.pone.0214960. eCollection 2019.
10
Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris.
Appl Microbiol Biotechnol. 2018 Mar;102(6):2839-2850. doi: 10.1007/s00253-017-8724-4. Epub 2018 Feb 10.

本文引用的文献

2
The genus desulfovibrio: the centennial.
Appl Environ Microbiol. 1995 Aug;61(8):2813-9. doi: 10.1128/aem.61.8.2813-2819.1995.
3
Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.
J Bacteriol. 2006 Mar;188(5):1817-28. doi: 10.1128/JB.188.5.1817-1828.2006.
5
Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum.
J Bacteriol. 2005 Oct;187(20):7103-18. doi: 10.1128/JB.187.20.7103-7118.2005.
6
Control of bacteriophage mu lysogenic repression.
J Mol Biol. 2005 Oct 14;353(1):186-95. doi: 10.1016/j.jmb.2005.08.015.
7
The sigma factor RpoS is required for stress tolerance and environmental fitness of Pseudomonas fluorescens Pf-5.
Microbiology (Reading). 2005 Sep;151(Pt 9):3001-3009. doi: 10.1099/mic.0.28077-0.
8
Use of microarrays with different probe sizes for monitoring gene expression.
Appl Environ Microbiol. 2005 Sep;71(9):5154-62. doi: 10.1128/AEM.71.9.5154-5162.2005.
10
The phage-shock-protein response.
Mol Microbiol. 2005 Aug;57(3):621-8. doi: 10.1111/j.1365-2958.2005.04694.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验