Suppr超能文献

基于高斯过程回归的自适应平滑提高了功能磁共振成像(fMRI)数据的敏感性和特异性。

Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

作者信息

Strappini Francesca, Gilboa Elad, Pitzalis Sabrina, Kay Kendrick, McAvoy Mark, Nehorai Arye, Snyder Abraham Z

机构信息

Department of Neurology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri.

Neurobiology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.

出版信息

Hum Brain Mapp. 2017 Mar;38(3):1438-1459. doi: 10.1002/hbm.23464. Epub 2016 Dec 10.

Abstract

Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc.

摘要

功能磁共振成像(fMRI)数据的时空滤波常用于提高统计功效。然而,传统方法,如使用固定宽度高斯滤波器进行平滑处理,会去除数据中的精细尺度结构,这就需要在灵敏度和特异性之间进行权衡。具体而言,平滑处理可能会提高灵敏度(降低噪声并增加统计功效),但代价是失去神经活动模式中精细尺度结构的特异性。在此,我们针对单受试者fMRI实验提出一种基于高斯过程(GP)回归的替代平滑方法。该方法根据局部神经活动模式的特征,逐体素地调整平滑水平。由于计算需求,基于GP的fMRI分析此前并不实用。在此,我们展示了一种新的GP实现方式,使其能够处理典型fMRI实验中的海量数据维度。我们展示了如何将GP用作标准fMRI流程中时空平滑的传统预处理步骤的直接替代方法。我们给出的模拟和实验结果表明,与传统平滑策略相比,其灵敏度和特异性有所提高。《人类大脑图谱》38:1438 - 1459, 2017。© 2016威利期刊公司

相似文献

1
Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.
Hum Brain Mapp. 2017 Mar;38(3):1438-1459. doi: 10.1002/hbm.23464. Epub 2016 Dec 10.
2
Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
IEEE Trans Med Imaging. 2004 Mar;23(3):374-87. doi: 10.1109/TMI.2004.824234.
4
Effects of spatial smoothing on fMRI group inferences.
Magn Reson Imaging. 2008 May;26(4):490-503. doi: 10.1016/j.mri.2007.08.006. Epub 2007 Dec 3.
5
Adaptive smoothing as inference strategy: more specificity for unequally sized or neighbouring regions.
Neuroinformatics. 2013 Oct;11(4):435-45. doi: 10.1007/s12021-013-9196-z.
6
Effects of spatial smoothing on inter-subject correlation based analysis of FMRI.
Magn Reson Imaging. 2014 Nov;32(9):1114-24. doi: 10.1016/j.mri.2014.06.001. Epub 2014 Jun 23.
7
Functional overestimation due to spatial smoothing of fMRI data.
J Neurosci Methods. 2017 Nov 1;291:1-12. doi: 10.1016/j.jneumeth.2017.08.003. Epub 2017 Aug 5.
8
Cortical Surface-Informed Volumetric Spatial Smoothing of fMRI Data via Graph Signal Processing.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3804-3808. doi: 10.1109/EMBC46164.2021.9629662.
9
Optimal spline smoothing of fMRI time series by generalized cross-validation.
Neuroimage. 2003 Apr;18(4):950-61. doi: 10.1016/s1053-8119(03)00013-2.
10
Precision fMRI and cluster-failure in the individual brain.
Hum Brain Mapp. 2024 Aug 15;45(12):e26813. doi: 10.1002/hbm.26813.

引用本文的文献

1
Exploring Generative Artificial Intelligence and Data Augmentation Techniques for Spectroscopy Analysis.
Chem Rev. 2025 Jul 9;125(13):6130-6155. doi: 10.1021/acs.chemrev.4c00815. Epub 2025 Jun 23.
2
Independent component analysis: a reliable alternative to general linear model for task-based fMRI.
Front Psychiatry. 2023 Aug 16;14:1214067. doi: 10.3389/fpsyt.2023.1214067. eCollection 2023.
3
Denoise Functional Magnetic Resonance Imaging With Random Matrix Theory Based Principal Component Analysis.
IEEE Trans Biomed Eng. 2022 Nov;69(11):3377-3388. doi: 10.1109/TBME.2022.3168592. Epub 2022 Oct 19.
4
Optic flow selectivity in the macaque parieto-occipital sulcus.
Brain Struct Funct. 2021 Dec;226(9):2911-2930. doi: 10.1007/s00429-021-02293-w. Epub 2021 May 27.
5
A common neural substrate for processing scenes and egomotion-compatible visual motion.
Brain Struct Funct. 2020 Sep;225(7):2091-2110. doi: 10.1007/s00429-020-02112-8. Epub 2020 Jul 9.
7
Neural bases of self- and object-motion in a naturalistic vision.
Hum Brain Mapp. 2020 Mar;41(4):1084-1111. doi: 10.1002/hbm.24862. Epub 2019 Nov 11.
8
Egomotion-related visual areas respond to active leg movements.
Hum Brain Mapp. 2019 Aug 1;40(11):3174-3191. doi: 10.1002/hbm.24589. Epub 2019 Mar 28.
9
Clinical application of advanced MR methods in children: points to consider.
Ann Clin Transl Neurol. 2018 Sep 27;5(11):1434-1455. doi: 10.1002/acn3.658. eCollection 2018 Nov.
10
Eight Weddings and Six Funerals: An fMRI Study on Autobiographical Memories.
Front Behav Neurosci. 2018 Sep 18;12:212. doi: 10.3389/fnbeh.2018.00212. eCollection 2018.

本文引用的文献

1
Scaling Multidimensional Inference for Structured Gaussian Processes.
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):424-36. doi: 10.1109/TPAMI.2013.192.
2
3
The human cortical areas V6 and V6A.
Vis Neurosci. 2015 Jan;32:E007. doi: 10.1017/S0952523815000048.
4
Resting-state connectivity and functional specialization in human medial parieto-occipital cortex.
Brain Struct Funct. 2015 Nov;220(6):3307-21. doi: 10.1007/s00429-014-0858-x. Epub 2014 Aug 6.
5
Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction.
Brain Struct Funct. 2015 Sep;220(5):2587-601. doi: 10.1007/s00429-014-0808-7. Epub 2014 Jun 19.
6
GLMdenoise: a fast, automated technique for denoising task-based fMRI data.
Front Neurosci. 2013 Dec 17;7:247. doi: 10.3389/fnins.2013.00247. eCollection 2013.
7
ICA of fMRI Studies: New Approaches and Cutting Edge Applications.
Front Hum Neurosci. 2013 Oct 28;7:724. doi: 10.3389/fnhum.2013.00724. eCollection 2013.
8
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neuroimage. 2014 Jan 1;84:320-41. doi: 10.1016/j.neuroimage.2013.08.048. Epub 2013 Aug 29.
9
The human homologue of macaque area V6A.
Neuroimage. 2013 Nov 15;82:517-30. doi: 10.1016/j.neuroimage.2013.06.026. Epub 2013 Jun 14.
10
BOLD Noise Assumptions in fMRI.
Int J Biomed Imaging. 2006;2006:12014. doi: 10.1155/IJBI/2006/12014. Epub 2006 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验