Suppr超能文献

识别急诊入院高危患者:一项逻辑回归分析。

Identifying patients at high risk of emergency hospital admissions: a logistic regression analysis.

作者信息

Bottle Alex, Aylin Paul, Majeed Azeem

机构信息

Department of Primary Care and Social Medicine, Imperial College London, London W6 8RP, UK.

出版信息

J R Soc Med. 2006 Aug;99(8):406-14. doi: 10.1177/014107680609900818.

Abstract

OBJECTIVE

To use routine data to identify patients at high risk of future emergency hospital admissions.

DESIGN

Descriptive analysis of inpatient hospital episode statistics. Predictive model developed using multiple logistic regression.

SETTING

National Health Service hospital trusts in England.

PARTICIPANTS

All patients with an emergency admission to an NHS hospital between 1 April 2000 and 31 March 2001.

MAIN OUTCOME MEASURES

'High-impact users' were defined as patients who had at least one emergency inpatient admission and who then went on to have at least two further emergency hospital admissions in the 12 months following the start date of that index admission.

RESULTS

2,895,234 patients were admitted as emergencies in 2000/2001, of whom 147,725 (5.1%) did not survive their first spell. Of the 2,747,509 surviving patients, 269,686 (9.8%) subsequently had at least two or more emergency admissions within 365 days of the index date of admission. A further 236,779 (8.6%) died during this period. Risk factors for becoming a high-impact user included the number of emergencies in the 36 months before index spell, comorbidity, age, an admission for an ambulatory care sensitive condition, ethnicity, area-level socioeconomic data, local admission rates, the number of episodes in the index spell, sex and the source of admission. The predictive model based on all emergency admissions produced a receiver operating characteristic curve score of 0.72.

CONCLUSIONS

Routine hospital episode statistics can be used to identify patients who are at high risk of suffering future multiple emergency hospital admissions. The potential cost savings in preventing a proportion of these subsequent admissions need to be compared with the costs of case management of these patients.

摘要

目的

利用常规数据识别未来有急诊住院高风险的患者。

设计

对住院患者病历统计数据进行描述性分析。使用多元逻辑回归开发预测模型。

设置

英格兰国民医疗服务体系(NHS)医院信托机构。

参与者

2000年4月1日至2001年3月31日期间因急诊入住NHS医院的所有患者。

主要观察指标

“高影响使用者”定义为至少有一次急诊住院,且在该索引住院开始日期后的12个月内又有至少两次急诊住院的患者。

结果

2000/2001年有2895234名患者因急诊入院,其中147725名(5.1%)在首次住院期间死亡。在2747509名存活患者中,269686名(9.8%)在索引住院日期后的365天内随后至少有两次或更多次急诊住院。在此期间另有236779名(8.6%)患者死亡。成为高影响使用者的风险因素包括索引住院前36个月内的急诊次数、合并症、年龄、因门诊护理敏感疾病入院、种族、地区层面的社会经济数据、当地住院率、索引住院期间的发作次数、性别和入院来源。基于所有急诊住院情况的预测模型产生的受试者工作特征曲线分数为0.72。

结论

常规住院病历统计数据可用于识别未来有多次急诊住院高风险的患者。预防部分后续住院可能节省的成本需要与这些患者的病例管理成本进行比较。

相似文献

引用本文的文献

4
Racial Disparities in Access to High-Volume Mitral Valve Transcatheter Edge-to-Edge Repair Centers.获得高容量二尖瓣经导管缘对缘修复中心的种族差异。
J Soc Cardiovasc Angiogr Interv. 2022 Jul 13;1(5):100398. doi: 10.1016/j.jscai.2022.100398. eCollection 2022 Sep-Oct.

本文引用的文献

5
Hospital episode statistics: time for clinicians to get involved?医院诊疗统计数据:临床医生参与的时候到了吗?
Clin Med (Lond). 2002 Sep-Oct;2(5):483-4; author reply 484. doi: 10.7861/clinmedicine.2-5-483a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验