Jaotombo Franck, Pauly Vanessa, Auquier Pascal, Orleans Veronica, Boucekine Mohamed, Fond Guillaume, Ghattas Badih, Boyer Laurent
Aix-Marseille University, EA 3279 - Public Health, Chronic Diseases and Quality of Life - Research Unit, La Timone Medical University, 27, boulevard Jean-Moulin.
Mathematics Institute of Marseille, Aix-Marseille University, Marseille, France.
Medicine (Baltimore). 2020 Dec 4;99(49):e22361. doi: 10.1097/MD.0000000000022361.
Predicting unplanned rehospitalizations has traditionally employed logistic regression models. Machine learning (ML) methods have been introduced in health service research and may improve the prediction of health outcomes. The objective of this work was to develop a ML model to predict 30-day all-cause rehospitalizations based on the French hospital medico-administrative database.This was a retrospective cohort study of all discharges in the year 2015 from acute-care inpatient hospitalizations in a tertiary-care university center comprising 4 French hospitals. The study endpoint was unplanned 30-day all-cause rehospitalization. Logistic regression (LR), classification and regression trees (CART), random forest (RF), gradient boosting (GB), and neural networks (NN) were applied to the collected data. The predictive performance of the models was evaluated using the H-measure and the area under the ROC curve (AUC).Our analysis included 118,650 hospitalizations, of which 4127 (3.5%) led to rehospitalizations via emergency departments. The RF model was the most performant model according to the H-measure (0.29) and the AUC (0.79). The performances of the RF, GB and NN models (H-measures ranged from 0.18 to 0. 29, AUC ranged from 0.74 to 0.79) were better than those of the LR model (H-measure = 0.18, AUC = 0.74); all P values <.001. In contrast, LR was superior to CART (H-measure = 0.16, AUC = 0.70), P < .0001.The use of ML may be an alternative to regression models to predict health outcomes. The integration of ML, particularly the RF algorithm, in the prediction of unplanned rehospitalization may help health service providers target patients at high risk of rehospitalizations and propose effective interventions at the hospital level.
传统上,预测非计划再住院情况一直采用逻辑回归模型。机器学习(ML)方法已被引入卫生服务研究中,并且可能会改善对健康结局的预测。这项工作的目的是基于法国医院医疗管理数据库开发一个ML模型,以预测30天全因再住院情况。
这是一项回顾性队列研究,研究对象为2015年在一所由4家法国医院组成的三级大学医疗中心进行的急性护理住院治疗后的所有出院病例。研究终点为非计划的30天全因再住院。将逻辑回归(LR)、分类与回归树(CART)、随机森林(RF)、梯度提升(GB)和神经网络(NN)应用于收集的数据。使用H度量和ROC曲线下面积(AUC)评估模型的预测性能。
我们的分析包括118,650例住院病例,其中4127例(3.5%)通过急诊科导致再住院。根据H度量(0.29)和AUC(0.79),RF模型是性能最佳的模型。RF、GB和NN模型的性能(H度量范围为0.18至0.29,AUC范围为0.74至0.79)优于LR模型(H度量 = 0.18,AUC = 0.74);所有P值 <.001。相比之下,LR优于CART(H度量 = 0.16,AUC = 0.70),P <.0001。
使用ML可能是回归模型预测健康结局的一种替代方法。将ML,特别是RF算法,整合到非计划再住院的预测中,可能有助于卫生服务提供者针对再住院高风险患者,并在医院层面提出有效的干预措施。