Suppr超能文献

一种由配体结合口袋的负像产生的虚拟活性化合物及其在计算机辅助药物筛选中的应用。

A virtual active compound produced from the negative image of a ligand-binding pocket, and its application to in-silico drug screening.

作者信息

Fukunishi Yoshifumi, Kubota Satoru, Kanai Chisato, Nakamura Haruki

机构信息

Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.

出版信息

J Comput Aided Mol Des. 2006 Apr;20(4):237-48. doi: 10.1007/s10822-006-9047-1. Epub 2006 Jun 21.

Abstract

We developed a new structure-based in-silico screening method using a negative image of a ligand-binding pocket and a multi-protein-compound interaction matrix. Based on the structure of the ligand pocket of the target protein, we designed a negative image, which consists of virtual atoms whose radii are close to those of carbon atoms. The virtual atoms fit the pocket ideally and achieve an optimal Coulomb interaction. A protein-compound docking program calculates the protein-compound interaction matrix for many proteins and many compounds including the negative image, which can be treated as a virtual compound. With specific attention to a vector of docking scores for a single compound with many proteins, we selected a compound whose score vector was similar to that of the negative image as a candidate hit compound. This method was applied to representative target proteins and showed high database enrichment with a relatively quick procedure.

摘要

我们开发了一种新的基于结构的计算机模拟筛选方法,该方法使用配体结合口袋的负像和多蛋白质-化合物相互作用矩阵。基于靶蛋白配体口袋的结构,我们设计了一种负像,它由半径与碳原子半径相近的虚拟原子组成。这些虚拟原子能理想地适配口袋并实现最佳的库仑相互作用。一个蛋白质-化合物对接程序会为许多蛋白质和许多化合物(包括可被视为虚拟化合物的负像)计算蛋白质-化合物相互作用矩阵。特别关注单个化合物与多种蛋白质的对接分数向量,我们选择了一种其分数向量与负像相似的化合物作为候选命中化合物。该方法应用于代表性靶蛋白时,以相对快速的程序显示出高数据库富集性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验