Morabia Alfredo
Service d'Epidémiologie Clinique, Département de médecine Communautaire, Hôpitaux Universitaires de Genève, 25 rue Micheli-du-Crest, 1205 Genève, Switzerland.
Hist Philos Life Sci. 2005;27(3-4):365-79.
Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.
流行病学方法结合了群体思维和群体比较,主要能够识别群体中的疾病病因。因此,在我们直观的病因概念(我们希望它在个体层面是确定性和不变的)与流行病学的病因概念(仅在群体层面是不变的)之间存在一种张力。到目前为止,流行病学家已针对这种张力给出了一个务实的解决方案。流行病学中的因果推断包括检查因果关系陈述的逻辑连贯性,并确定所发现的内容是否与我们认为已知的内容严重矛盾:关联有多强?是否存在剂量反应关系?原因是否先于结果?结果在生物学上是否合理?等等。这种因果推断方法可以追溯到英国哲学家大卫·休谟和约翰·斯图尔特·密尔。另一方面,由雅各布·亨勒和罗伯特·科赫设计的建立因果关系的模式,在细菌学中成效显著,它要求在每一个实例中结果都必然跟随原因(例如,接种结核杆菌与肺结核)。这与流行病学因果关系不相容,因为流行病学因果关系必须处理概率性效应(例如,吸烟与肺癌),因此仅在群体层面是不变的。