Gao Shujing, Chen Lansun, Teng Zhidong
College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, P.R. China.
Bull Math Biol. 2007 Feb;69(2):731-45. doi: 10.1007/s11538-006-9149-x. Epub 2006 Aug 11.
Pulse vaccination is an effective and important strategy for the elimination of infectious diseases. A delayed SEIRS epidemic model with pulse vaccination and varying total population size is proposed in this paper. We point out, if R* < 1, the infectious population disappear so the disease dies out, while if R(*) > 1, the infectious population persist. Our results indicate that a long period of pulsing or a small pulse vaccination rate is sufficient condition for the permanence of the model.
脉冲式疫苗接种是消除传染病的一种有效且重要的策略。本文提出了一个具有脉冲式疫苗接种和可变总人口规模的延迟SEIRS传染病模型。我们指出,如果(R^\lt1),感染人群消失,疾病灭绝;而如果(R^\gt1),感染人群持续存在。我们的结果表明,长时间的脉冲接种或低脉冲式疫苗接种率是该模型持续存在的充分条件。