以新冠疫情为例的基于信息熵的动态SEIR模型

Dynamical SEIR Model With Information Entropy Using COVID-19 as a Case Study.

作者信息

Nie Qi, Liu Yifeng, Zhang Dong, Jiang Hao

机构信息

Electronic Information SchoolWuhan University Wuhan 430072 China.

National Engineering Laboratory for Risk Perception and Prevention (NEL-RPP)China Academy of Electronics and Information Technology Beijing 100041 China.

出版信息

IEEE Trans Comput Soc Syst. 2021 Jan 11;8(4):946-954. doi: 10.1109/TCSS.2020.3046712. eCollection 2021 Aug.

Abstract

Social network information is a measure of the number of infections. Understanding the effect of social network information on disease spread can help improve epidemic forecasting and uncover preventive measures. Many driving factors for the transmission mechanism of infectious diseases remain unclear. Some experts believe that redundant information on social media may increase people's panic to evade the restrictions or refuse to report their symptoms, which increases the actual infection rate. We analyze the engagement in the COVID-19 topics on the Internet and find that the infection rate is not only related to the total amount of information. In our research, information entropy is introduced into the quantification of the impact of social network information. We find that the amount of information with different distributions has different effects on disease transmission. Furthermore, we build a new dynamic susceptible-exposed-infected-recovered (SEIR) model with information entropy to simulate the epidemic situation in China. Simulation results show that our modified model is effective in predicting the COVID-19 epidemic peaks and sizes.

摘要

社交网络信息是感染数量的一种衡量指标。了解社交网络信息对疾病传播的影响有助于改进疫情预测并发现预防措施。传染病传播机制的许多驱动因素仍不明确。一些专家认为,社交媒体上的冗余信息可能会增加人们逃避限制或拒绝报告症状的恐慌情绪,从而提高实际感染率。我们分析了互联网上关于新冠疫情主题的参与情况,发现感染率不仅与信息总量有关。在我们的研究中,信息熵被引入到社交网络信息影响的量化中。我们发现,不同分布的信息量对疾病传播有不同影响。此外,我们构建了一个带有信息熵的新的动态易感-暴露-感染-康复(SEIR)模型来模拟中国的疫情情况。模拟结果表明,我们改进后的模型在预测新冠疫情峰值和规模方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索