Suppr超能文献

生化网络的降阶建模:在GTP酶循环信号模块中的应用。

Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.

作者信息

Maurya M R, Bornheimer S J, Venkatasubramanian V, Subramaniam S

机构信息

San Diego Supercomputer Center, La Jolla, CA 92093, USA.

出版信息

Syst Biol (Stevenage). 2005 Dec;152(4):229-42. doi: 10.1049/ip-syb:20050014.

Abstract

Biochemical systems embed complex networks and hence development and analysis of their detailed models pose a challenge for computation. Coarse-grained biochemical models, called reduced-order models (ROMs), consisting of essential biochemical mechanisms are more useful for computational analysis and for studying important features of a biochemical network. The authors present a novel method to model-reduction by identifying potentially important parameters using multidimensional sensitivity analysis. A ROM is generated for the GTPase-cycle module of m1 muscarinic acetylcholine receptor, Gq, and regulator of G-protein signalling 4 (a GTPase-activating protein or GAP) starting from a detailed model of 48 reactions. The resulting ROM has only 17 reactions. The ROM suggested that complexes of G-protein coupled receptor (GPCR) and GAP--which were proposed in the detailed model as a hypothesis--are required to fit the experimental data. Models previously published in the literature are also simulated and compared with the ROM. Through this comparison, a minimal ROM, that also requires complexes of GPCR and GAP, with just 15 parameters is generated. The proposed reduced-order modelling methodology is scalable to larger networks and provides a general framework for the reduction of models of biochemical systems.

摘要

生化系统嵌入了复杂的网络,因此其详细模型的开发和分析对计算构成了挑战。由基本生化机制组成的粗粒度生化模型,即所谓的降阶模型(ROMs),对于计算分析和研究生化网络的重要特征更有用。作者提出了一种通过多维敏感性分析识别潜在重要参数来进行模型降阶的新方法。从一个包含48个反应的详细模型开始,为M1毒蕈碱型乙酰胆碱受体的GTPase循环模块、Gq和G蛋白信号调节剂4(一种GTPase激活蛋白或GAP)生成了一个ROM。所得的ROM只有17个反应。该ROM表明,在详细模型中作为假设提出的G蛋白偶联受体(GPCR)和GAP的复合物是拟合实验数据所必需的。还对文献中先前发表的模型进行了模拟,并与该ROM进行了比较。通过这种比较,生成了一个最小的ROM,它也需要GPCR和GAP的复合物,且只有15个参数。所提出的降阶建模方法可扩展到更大的网络,并为生化系统模型的降阶提供了一个通用框架。

相似文献

1
Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.
Syst Biol (Stevenage). 2005 Dec;152(4):229-42. doi: 10.1049/ip-syb:20050014.
2
Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks.
IET Syst Biol. 2009 Jan;3(1):24-39. doi: 10.1049/iet-syb:20080098.
3
Coordinate regulation of G protein signaling via dynamic interactions of receptor and GAP.
PLoS Comput Biol. 2008 Aug 15;4(8):e1000148. doi: 10.1371/journal.pcbi.1000148.
4
Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15899-904. doi: 10.1073/pnas.0407009101. Epub 2004 Nov 1.
5
Generalized concept of minimal cut sets in biochemical networks.
Biosystems. 2006 Feb-Mar;83(2-3):233-47. doi: 10.1016/j.biosystems.2005.04.009. Epub 2005 Nov 21.
6
A hybrid approach for efficient and robust parameter estimation in biochemical pathways.
Biosystems. 2006 Feb-Mar;83(2-3):248-65. doi: 10.1016/j.biosystems.2005.06.016. Epub 2005 Oct 19.
8
Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator.
Cell. 1992 Aug 7;70(3):411-8. doi: 10.1016/0092-8674(92)90165-9.
9
Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with PORGY.
Methods Mol Biol. 2019;1945:43-70. doi: 10.1007/978-1-4939-9102-0_3.
10
Computational model explains high activity and rapid cycling of Rho GTPases within protein complexes.
PLoS Comput Biol. 2006 Dec 1;2(12):e172. doi: 10.1371/journal.pcbi.0020172. Epub 2006 Oct 9.

引用本文的文献

1
HillTau: A fast, compact abstraction for model reduction in biochemical signaling networks.
PLoS Comput Biol. 2021 Nov 29;17(11):e1009621. doi: 10.1371/journal.pcbi.1009621. eCollection 2021 Nov.
2
Inferring phenomenological models of first passage processes.
PLoS Comput Biol. 2021 Mar 5;17(3):e1008740. doi: 10.1371/journal.pcbi.1008740. eCollection 2021 Mar.
4
Evaluating model reduction under parameter uncertainty.
BMC Syst Biol. 2018 Jul 27;12(1):79. doi: 10.1186/s12918-018-0602-x.
5
Model reduction in mathematical pharmacology : Integration, reduction and linking of PBPK and systems biology models.
J Pharmacokinet Pharmacodyn. 2018 Aug;45(4):537-555. doi: 10.1007/s10928-018-9584-y. Epub 2018 Mar 26.
6
Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.
Bull Math Biol. 2017 Jul;79(7):1449-1486. doi: 10.1007/s11538-017-0277-2. Epub 2017 Jun 27.
7
A combined model reduction algorithm for controlled biochemical systems.
BMC Syst Biol. 2017 Feb 13;11(1):17. doi: 10.1186/s12918-017-0397-1.
8
Driving the Model to Its Limit: Profile Likelihood Based Model Reduction.
PLoS One. 2016 Sep 2;11(9):e0162366. doi: 10.1371/journal.pone.0162366. eCollection 2016.
9
Crosstalks between cytokines and Sonic Hedgehog in Helicobacter pylori infection: a mathematical model.
PLoS One. 2014 Nov 3;9(11):e111338. doi: 10.1371/journal.pone.0111338. eCollection 2014.
10
A model reduction method for biochemical reaction networks.
BMC Syst Biol. 2014 May 3;8:52. doi: 10.1186/1752-0509-8-52.

本文引用的文献

2
In silico identification of the key components and steps in IFN-gamma induced JAK-STAT signaling pathway.
FEBS Lett. 2005 Feb 14;579(5):1101-8. doi: 10.1016/j.febslet.2005.01.009.
4
Monte Carlo simulations of receptor dynamics: insights into cell signaling.
J Mol Histol. 2004 Sep;35(7):667-77. doi: 10.1007/s10735-004-2663-y.
5
Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15899-904. doi: 10.1073/pnas.0407009101. Epub 2004 Nov 1.
6
Participation of RGS8 in the ternary complex of agonist, receptor and G-protein.
Biochem Soc Trans. 2004 Dec;32(Pt 6):1045-7. doi: 10.1042/BST0321045.
7
Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways.
Biophys J. 2004 Aug;87(2):733-44. doi: 10.1529/biophysj.104.040469.
8
Integrating high-throughput and computational data elucidates bacterial networks.
Nature. 2004 May 6;429(6987):92-6. doi: 10.1038/nature02456.
10
Modeling beta-adrenergic control of cardiac myocyte contractility in silico.
J Biol Chem. 2003 Nov 28;278(48):47997-8003. doi: 10.1074/jbc.M308362200. Epub 2003 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验