Bornheimer Scott J, Maurya Mano R, Farquhar Marilyn Gist, Subramaniam Shankar
Departments of Chemistry and Biochemistry, Cellular and Molecular Medicine, and Bioengineering and San Diego Supercomputer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15899-904. doi: 10.1073/pnas.0407009101. Epub 2004 Nov 1.
Heterotrimeric G protein signaling is regulated by signaling modules composed of heterotrimeric G proteins, active G protein-coupled receptors (Rs), which activate G proteins, and GTPase-activating proteins (GAPs), which deactivate G proteins. We term these modules GTPase-cycle modules. The local concentrations of these proteins are spatially regulated between plasma membrane microdomains and between the plasma membrane and cytosol, but no data or models are available that quantitatively explain the effect of such regulation on signaling. We present a computational model of the GTPase-cycle module that predicts that the interplay of local G protein, R, and GAP concentrations gives rise to 16 distinct signaling regimes and numerous intermediate signaling phenomena. The regimes suggest alternative modes of the GTPase-cycle module that occur based on defined local concentrations of the component proteins. In one mode, signaling occurs while G protein and receptor are unclustered and GAP eliminates signaling; in another, G protein and receptor are clustered and GAP can rapidly modulate signaling but does not eliminate it. Experimental data from multiple GTPase-cycle modules is interpreted in light of these predictions. The latter mode explains previously paradoxical data in which GAP does not alter maximal current amplitude of G protein-activated ion channels, but hastens signaling. The predictions indicate how variations in local concentrations of the component proteins create GTPase-cycle modules with distinctive phenotypes. They provide a quantitative framework for investigating how regulation of local concentrations of components of the GTPase-cycle module affects signaling.
异源三聚体G蛋白信号传导由异源三聚体G蛋白、激活G蛋白的活性G蛋白偶联受体(Rs)和使G蛋白失活的GTP酶激活蛋白(GAPs)组成的信号模块调控。我们将这些模块称为GTP酶循环模块。这些蛋白质的局部浓度在质膜微区之间以及质膜与细胞质之间受到空间调控,但尚无数据或模型能够定量解释这种调控对信号传导的影响。我们提出了一个GTP酶循环模块的计算模型,该模型预测局部G蛋白、R和GAP浓度的相互作用会产生16种不同的信号传导状态以及众多中间信号现象。这些状态表明基于组分蛋白特定局部浓度而出现的GTP酶循环模块的替代模式。在一种模式中,当G蛋白和受体未聚集时信号传导发生,而GAP消除信号传导;在另一种模式中,G蛋白和受体聚集,GAP可以快速调节信号传导但不会消除它。根据这些预测对来自多个GTP酶循环模块的实验数据进行了解释。后一种模式解释了先前矛盾的数据,即GAP不会改变G蛋白激活的离子通道的最大电流幅度,但会加速信号传导。这些预测表明组分蛋白局部浓度的变化如何产生具有独特表型的GTP酶循环模块。它们为研究GTP酶循环模块组分局部浓度的调控如何影响信号传导提供了一个定量框架。