Suppr超能文献

用于生物化学网络粗粒化的混合整数非线性优化方法

Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks.

作者信息

Maurya M R, Bornheimer S J, Venkatasubramanian V, Subramaniam S

机构信息

University of California, San Diego, Department of Bioengineering, La Jolla, CA 92093, USA.

出版信息

IET Syst Biol. 2009 Jan;3(1):24-39. doi: 10.1049/iet-syb:20080098.

Abstract

Quantitative modelling and analysis of biochemical networks is challenging because of the inherent complexities and nonlinearities of the system and the limited availability of parameter values. Even if a mathematical model of the network can be developed, the lack of large-scale good-quality data makes accurate estimation of a large number of parameters impossible. Hence, coarse-grained models (CGMs) consisting of essential biochemical mechanisms are more suitable for computational analysis and for studying important systemic functions. The central question in constructing a CGM is which mechanisms should be deemed 'essential' and which can be ignored. Also, how should parameter values be defined when data are sparse? A mixed-integer nonlinear-programming (MINLP) based optimisation approach to coarse-graining is presented. Starting with a detailed biochemical model with associated computational details (reaction network and mathematical description) and data on the biochemical system, the structure and the parameters of a CGM can be determined simultaneously. In this optimisation problem, the authors use a genetic algorithm to simultaneously identify parameter values and remove unimportant reactions. The methodology is exemplified by developing two CGMs for the GTPase-cycle module of M1 muscarinic acetylcholine receptor, Gq, and regulator of G protein signalling 4 [RGS4, a GTPase-activating protein (GAP)] starting from a detailed model of 48 reactions. Both the CGMs have only 17 reactions, fit experimental data well and predict, as does the detailed model, four limiting signalling regimes (LSRs) corresponding to the extremes of receptor and GAP concentration. The authors demonstrate that coarse-graining, in addition to resulting in a reduced-order model, also provides insights into the mechanisms in the network. The best CGM obtained for the GTPase cycle also contains an unconventional mechanism and its predictions explain an old problem in pharmacology, the biphasic (bell-shaped) response to certain drugs. The MINLP methodology is broadly applicable to larger and complex (dense) biochemical modules.

摘要

由于生化网络系统固有的复杂性和非线性以及参数值的有限可用性,对其进行定量建模和分析具有挑战性。即使可以开发出网络的数学模型,但由于缺乏大规模高质量数据,也无法准确估计大量参数。因此,由基本生化机制组成的粗粒度模型(CGM)更适合进行计算分析和研究重要的系统功能。构建CGM的核心问题是哪些机制应被视为“基本”机制,哪些可以忽略。此外,在数据稀疏时应如何定义参数值?本文提出了一种基于混合整数非线性规划(MINLP)的粗粒度优化方法。从具有相关计算细节(反应网络和数学描述)的详细生化模型以及生化系统的数据开始,可以同时确定CGM的结构和参数。在这个优化问题中,作者使用遗传算法同时识别参数值并去除不重要的反应。通过从一个包含48个反应的详细模型出发,为M1毒蕈碱型乙酰胆碱受体的GTP酶循环模块、Gq以及G蛋白信号调节因子4 [RGS4,一种GTP酶激活蛋白(GAP)]开发两个CGM,对该方法进行了举例说明。这两个CGM都只有17个反应,能很好地拟合实验数据,并像详细模型一样预测出对应受体和GAP浓度极值的四种极限信号传导状态(LSR)。作者证明,粗粒度化除了能得到一个降阶模型外,还能深入了解网络中的机制。为GTP酶循环获得的最佳CGM还包含一种非常规机制,其预测解释了药理学中的一个老问题,即对某些药物的双相(钟形)反应。MINLP方法广泛适用于更大、更复杂(密集)的生化模块。

相似文献

1
Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks.
IET Syst Biol. 2009 Jan;3(1):24-39. doi: 10.1049/iet-syb:20080098.
2
Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.
Syst Biol (Stevenage). 2005 Dec;152(4):229-42. doi: 10.1049/ip-syb:20050014.
3
Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15899-904. doi: 10.1073/pnas.0407009101. Epub 2004 Nov 1.
6
Spectral coarse graining for random walks in bipartite networks.
Chaos. 2013 Mar;23(1):013104. doi: 10.1063/1.4773823.
7
Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.
IET Syst Biol. 2016 Feb;10(1):10-6. doi: 10.1049/iet-syb.2015.0034.
8
FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
PLoS Comput Biol. 2021 Sep 9;17(9):e1009410. doi: 10.1371/journal.pcbi.1009410. eCollection 2021 Sep.
9
Coarse-graining and self-dissimilarity of complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016127. doi: 10.1103/PhysRevE.71.016127. Epub 2005 Jan 21.
10
Emergent Spaces for Coupled Oscillators.
Front Comput Neurosci. 2020 May 12;14:36. doi: 10.3389/fncom.2020.00036. eCollection 2020.

引用本文的文献

1
A data-driven optimization method for coarse-graining gene regulatory networks.
iScience. 2023 Jan 4;26(2):105927. doi: 10.1016/j.isci.2023.105927. eCollection 2023 Feb 17.
2
Parallel Tempering with Lasso for model reduction in systems biology.
PLoS Comput Biol. 2020 Mar 9;16(3):e1007669. doi: 10.1371/journal.pcbi.1007669. eCollection 2020 Mar.
4
Model reduction in mathematical pharmacology : Integration, reduction and linking of PBPK and systems biology models.
J Pharmacokinet Pharmacodyn. 2018 Aug;45(4):537-555. doi: 10.1007/s10928-018-9584-y. Epub 2018 Mar 26.
5
Methods of Model Reduction for Large-Scale Biological Systems: A Survey of Current Methods and Trends.
Bull Math Biol. 2017 Jul;79(7):1449-1486. doi: 10.1007/s11538-017-0277-2. Epub 2017 Jun 27.
6
A combined model reduction algorithm for controlled biochemical systems.
BMC Syst Biol. 2017 Feb 13;11(1):17. doi: 10.1186/s12918-017-0397-1.

本文引用的文献

1
The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS.
Expert Opin Drug Discov. 2007 May;2(5):603-19. doi: 10.1517/17460441.2.5.603.
2
Network analysis of oncogenic Ras activation in cancer.
Science. 2007 Oct 19;318(5849):463-7. doi: 10.1126/science.1144642.
3
Reduced modeling of signal transduction - a modular approach.
BMC Bioinformatics. 2007 Sep 13;8:336. doi: 10.1186/1471-2105-8-336.
4
A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability.
Biophys J. 2007 Aug 1;93(3):709-28. doi: 10.1529/biophysj.106.097469. Epub 2007 May 4.
5
Systems biology--an engineering perspective.
J Biotechnol. 2007 Apr 30;129(2):329-51. doi: 10.1016/j.jbiotec.2007.02.009. Epub 2007 Feb 24.
6
Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins.
J Pharmacol Exp Ther. 2007 Feb;320(2):607-14. doi: 10.1124/jpet.106.114314. Epub 2006 Oct 25.
8
Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.
Syst Biol (Stevenage). 2005 Dec;152(4):229-42. doi: 10.1049/ip-syb:20050014.
9
Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling.
Semin Cell Dev Biol. 2006 Jun;17(3):383-9. doi: 10.1016/j.semcdb.2006.03.002. Epub 2006 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验