Polikar Robi, Topalis Apostolos, Green Deborah, Kounios John, Clark Christopher M
Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028, USA.
Comput Biol Med. 2007 Apr;37(4):542-58. doi: 10.1016/j.compbiomed.2006.08.012. Epub 2006 Sep 20.
Early diagnosis of Alzheimer's disease (AD) is becoming an increasingly important healthcare concern. Prior approaches analyzing event-related potentials (ERPs) had varying degrees of success, primarily due to smaller study cohorts, and the inherent difficulty of the problem. A new effort using multiresolution analysis of ERPs is described. Distinctions of this study include analyzing a larger cohort, comparing different wavelets and different frequency bands, using ensemble-based decisions and, most importantly, aiming the earliest possible diagnosis of the disease. Surprising yet promising outcomes indicate that ERPs in response to novel sounds of oddball paradigm may be more reliable as a biomarker than the more commonly used responses to target sounds.
阿尔茨海默病(AD)的早期诊断正日益成为医疗保健领域的重要关注点。以往分析事件相关电位(ERP)的方法取得了不同程度的成功,主要原因在于研究队列规模较小以及该问题本身固有的难度。本文描述了一项使用ERP多分辨率分析的新研究。该研究的独特之处包括分析更大的队列、比较不同的小波和不同的频段、采用基于集成的决策方法,最重要的是,旨在尽可能早期诊断该疾病。令人惊讶却又充满希望的结果表明,与更常用的对目标声音的反应相比,对异常范式的新奇声音做出反应的ERP作为生物标志物可能更可靠。