Suppr超能文献

体外海马γ振荡期间解剖学上确定的CA3神经元中的突触电流。

Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.

作者信息

Oren Iris, Mann Edward O, Paulsen Ole, Hájos Norbert

机构信息

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.

出版信息

J Neurosci. 2006 Sep 27;26(39):9923-34. doi: 10.1523/JNEUROSCI.1580-06.2006.

Abstract

Gamma-frequency oscillations are prominent during active network states in the hippocampus. An intrahippocampal gamma generator has been identified in the CA3 region. To better understand the synaptic mechanisms involved in gamma oscillogenesis, we recorded action potentials and synaptic currents in distinct types of anatomically identified CA3 neurons during carbachol-induced (20-25 microM) gamma oscillations in rat hippocampal slices. We wanted to compare and contrast the relationship between excitatory and inhibitory postsynaptic currents in pyramidal cells and perisomatic-targeting interneurons, cell types implicated in gamma oscillogenesis, as well as in other interneuron subtypes, and to relate synaptic currents to the firing properties of the cells. We found that phasic synaptic input differed between cell classes. Most strikingly, the dominant phasic input to pyramidal neurons was inhibitory, whereas phase-coupled perisomatic-targeting interneurons often received a strong phasic excitatory input. Differences in synaptic input could account for some of the differences in firing rate, action potential phase precision, and mean action potential phase angle, both between individual cells and between cell types. There was a strong positive correlation between the ratio of phasic synaptic excitation to inhibition and firing rate over all neurons and between the phase precision of excitation and action potentials in interneurons. Moreover, mean action potential phase angle correlated with the phase of the peak of the net-estimated synaptic reversal potential in all phase-coupled neurons. The data support a recurrent mechanism of gamma oscillations, whereby spike timing is controlled primarily by inhibition in pyramidal cells and by excitation in interneurons.

摘要

γ 频率振荡在海马体的活跃网络状态期间十分显著。已在 CA3 区域鉴定出海马体内的一个 γ 发生器。为了更好地理解 γ 振荡产生所涉及的突触机制,我们在大鼠海马体切片中,于卡巴胆碱诱导(20 - 25 μM)的 γ 振荡期间,记录了解剖学上已明确的不同类型 CA3 神经元的动作电位和突触电流。我们想要比较和对比锥体细胞和靶向胞体周围的中间神经元(这两种参与 γ 振荡产生的细胞类型)以及其他中间神经元亚型中兴奋性和抑制性突触后电流之间的关系,并将突触电流与细胞的放电特性联系起来。我们发现不同细胞类别之间的相位性突触输入存在差异。最显著的是,锥体细胞的主要相位性输入是抑制性的,而相位耦合的靶向胞体周围的中间神经元通常会接收到强烈的相位性兴奋性输入。突触输入的差异可以解释个体细胞之间以及细胞类型之间在放电率、动作电位相位精度和平均动作电位相位角方面的一些差异。在所有神经元中,相位性突触兴奋与抑制的比率和放电率之间,以及中间神经元中兴奋的相位精度和动作电位之间存在很强的正相关。此外,在所有相位耦合的神经元中,平均动作电位相位角与净估计突触反转电位峰值的相位相关。这些数据支持了一种 γ 振荡的循环机制,即脉冲发放时间主要由锥体细胞中的抑制和中间神经元中的兴奋所控制。

相似文献

1
Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
J Neurosci. 2006 Sep 27;26(39):9923-34. doi: 10.1523/JNEUROSCI.1580-06.2006.
4
Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
J Neurosci. 2004 Oct 13;24(41):9127-37. doi: 10.1523/JNEUROSCI.2113-04.2004.
6
Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.
10
The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats.
Neuroscience. 1998 May;84(1):71-9. doi: 10.1016/s0306-4522(97)00499-5.

引用本文的文献

1
Temporal integration on the dendrites of fast-spiking basket cells.
Sci Rep. 2024 Dec 5;14(1):30278. doi: 10.1038/s41598-024-81655-w.
2
The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders.
Life (Basel). 2024 Apr 30;14(5):578. doi: 10.3390/life14050578.
3
Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus.
Cognit Comput. 2023 Jul;15(4):1190-1210. doi: 10.1007/s12559-021-09954-2. Epub 2022 Jan 28.
4
Over and above frequency: Gamma oscillations as units of neural circuit operations.
Neuron. 2023 Apr 5;111(7):936-953. doi: 10.1016/j.neuron.2023.02.026.
5
Inter-Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics in an Oscillatory Network.
eNeuro. 2022 Jul 25;9(4). doi: 10.1523/ENEURO.0027-22.2022. Print 2022 Jul-Aug.
7
Temporal interference stimulation targets deep brain regions by modulating neural oscillations.
Brain Stimul. 2021 Jan-Feb;14(1):55-65. doi: 10.1016/j.brs.2020.11.007. Epub 2020 Nov 11.
8
Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
J Neurosci. 2020 Sep 30;40(40):7668-7687. doi: 10.1523/JNEUROSCI.0261-20.2020. Epub 2020 Aug 28.
10
Gamma Oscillations in the Basolateral Amygdala: Biophysical Mechanisms and Computational Consequences.
eNeuro. 2019 Feb 5;6(1). doi: 10.1523/ENEURO.0388-18.2018. eCollection 2019 Jan-Feb.

本文引用的文献

2
4
Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13295-300. doi: 10.1073/pnas.0506259102. Epub 2005 Sep 2.
6
Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back.
J Physiol. 2005 Jan 1;562(Pt 1):55-63. doi: 10.1113/jphysiol.2004.078758. Epub 2004 Nov 11.
7
Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro.
J Physiol. 2005 Jan 1;562(Pt 1):131-47. doi: 10.1113/jphysiol.2004.073007. Epub 2004 Oct 14.
8
Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
J Neurosci. 2004 Oct 13;24(41):9127-37. doi: 10.1523/JNEUROSCI.2113-04.2004.
9
Interneuron diversity series: inhibitory interneurons and network oscillations in vitro.
Trends Neurosci. 2003 Dec;26(12):676-82. doi: 10.1016/j.tins.2003.09.016.
10
Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro.
J Neurosci. 2003 Oct 29;23(30):9761-9. doi: 10.1523/JNEUROSCI.23-30-09761.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验