Ainavarapu Sri Rama Koti, Brujic Jasna, Huang Hector H, Wiita Arun P, Lu Hui, Li Lewyn, Walther Kirstin A, Carrion-Vazquez Mariano, Li Hongbin, Fernandez Julio M
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
Biophys J. 2007 Jan 1;92(1):225-33. doi: 10.1529/biophysj.106.091561. Epub 2006 Oct 6.
The introduction of disulfide bonds into proteins creates additional mechanical barriers and limits the unfolded contour length (i.e., the maximal extension) measured by single-molecule force spectroscopy. Here, we engineer single disulfide bonds into four different locations of the human cardiac titin module (I27) to control the contour length while keeping the distance to the transition state unchanged. This enables the study of several biologically important parameters. First, we are able to precisely determine the end-to-end length of the transition state before unfolding (53 Angstrom), which is longer than the end-to-end length of the protein obtained from NMR spectroscopy (43 Angstrom). Second, the measured contour length per amino acid from five different methods (4.0 +/- 0.2 Angstrom) is longer than the end-to-end length obtained from the crystal structure (3.6 Angstrom). Our measurement of the contour length takes into account all the internal degrees of freedom of the polypeptide chain, whereas crystallography measures the end-to-end length within the "frozen" protein structure. Furthermore, the control of contour length and therefore the number of amino acids unraveled before reaching the disulfide bond (n) facilitates the test of the chain length dependence on the folding time (tau(F)). We find that both a power law scaling tau(F) lambda n(lambda) with lambda = 4.4, and an exponential scaling with n(0.6) fit the data range, in support of different protein-folding scenarios.
将二硫键引入蛋白质会产生额外的机械屏障,并限制通过单分子力谱测量的未折叠轮廓长度(即最大延伸长度)。在此,我们将单个二硫键工程化到人类心肌肌联蛋白模块(I27)的四个不同位置,以控制轮廓长度,同时保持与过渡态的距离不变。这使得能够研究几个生物学上重要的参数。首先,我们能够精确确定展开前过渡态的端到端长度(53埃),这比通过核磁共振光谱获得的蛋白质端到端长度(43埃)更长。其次,通过五种不同方法测得的每个氨基酸的轮廓长度(4.0±0.2埃)比从晶体结构获得的端到端长度(3.6埃)更长。我们对轮廓长度的测量考虑了多肽链的所有内部自由度,而晶体学测量的是“冻结”蛋白质结构内的端到端长度。此外,对轮廓长度的控制以及因此对在到达二硫键之前解开的氨基酸数量(n)的控制,有助于测试链长度对折叠时间(τF)的依赖性。我们发现,幂律标度τF∝nλ(其中λ = 4.4)和指数标度∝n0.6都符合数据范围,这支持了不同的蛋白质折叠情况。