Suppr超能文献

GDx VCC、HRT I的准确性以及立体视盘照片的临床评估在青光眼诊断中的应用

Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma.

作者信息

Reus Nicolaas J, de Graaf Maartje, Lemij Hans G

机构信息

Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands.

出版信息

Br J Ophthalmol. 2007 Mar;91(3):313-8. doi: 10.1136/bjo.2006.096586. Epub 2006 Oct 11.

Abstract

AIMS

To determine and compare the accuracy and reproducibility of GDx variable cornea compensation (VCC) scanning laser polarimetry (SLP) with VCC, Heidelberg retina tomograph (HRT) I confocal scanning laser ophthalmoscopy (CSLO), and clinical assessment of stereoscopic optic nerve head (ONH) photographs for diagnosing glaucoma.

METHODS

One eye each of 40 healthy subjects, 48 glaucoma patients, and six patients with ocular hypertension were measured with SLP-VCC and CSLO. Simultaneous stereoscopic ONH photographs were also obtained. Sixteen photographs of healthy and glaucomatous eyes were duplicated for assessing intraobserver agreement. Four glaucoma specialists, four general ophthalmologists, four residents in ophthalmology, and four optometrists classified the ONH photographs as normal or glaucomatous. For SLP-VCC, the nerve fiber indicator (NFI) was evaluated. For CSLO, the Moorfields regression analysis (MRA) and the Bathija linear discriminant function (LDF) were used. Sensitivity, specificity, percentage of correctly classified eyes, and intra- and interobserver agreement, expressed as kappa (kappa) were calculated.

RESULTS

SLP-VCC had the highest diagnostic accuracy, with a sensitivity, specificity, and overall correct classification of 91.7%, 95.0% and 93.2%, respectively. CSLO, expressed as Bathija LDF and MRA, had a diagnostic accuracy comparable to glaucoma specialists and general ophthalmologists with an overall accuracy of 89.8%, 86.4%, 86.7% and 85.2%, respectively. Residents classified the fewest eyes correctly. Intraobserver agreement for classifying the ONH photographs ranged between 0.48 (within residents) and 0.78 (within glaucoma specialists). The interobserver agreement ranged between 0.45 (between residents) and 0.74 (between glaucoma specialists). The agreement between observers and CSLO MRA (kappa, 0.68) was statistically significantly higher (p<0.001; paired t-test) than between observers and SLP-VCC NFI (kappa, 0.60) and CSLO Bathija LDF (kappa, 0.62).

CONCLUSION

Automated analysis of measurements with GDx VCC and HRT had a similar diagnostic accuracy for glaucoma as classification of stereoscopic ONH photographs by glaucoma specialists, thus bringing all eye-care professionals to this desirable level. The intra- and interobserver agreement for ONH analysis was only moderate to good. We think these imaging techniques may assist clinicians in diagnosing glaucoma.

摘要

目的

确定并比较GDx可变角膜补偿(VCC)扫描激光偏振仪(SLP)结合VCC、海德堡视网膜断层扫描仪(HRT)I共焦扫描激光检眼镜(CSLO)以及立体视盘(ONH)照片的临床评估在青光眼诊断中的准确性和可重复性。

方法

对40名健康受试者、48名青光眼患者和6名高眼压症患者的单眼进行SLP-VCC和CSLO测量。同时获取立体视盘照片。复制16张健康眼和青光眼眼的照片以评估观察者内一致性。4名青光眼专家、4名普通眼科医生、4名眼科住院医师和4名验光师将视盘照片分类为正常或青光眼性。对于SLP-VCC,评估神经纤维指数(NFI)。对于CSLO,使用摩尔菲尔德回归分析(MRA)和巴蒂亚线性判别函数(LDF)。计算敏感性、特异性、正确分类眼的百分比以及观察者内和观察者间一致性,用kappa(κ)表示。

结果

SLP-VCC具有最高的诊断准确性,敏感性、特异性和总体正确分类分别为91.7%、95.0%和93.2%。以巴蒂亚LDF和MRA表示的CSLO,其诊断准确性与青光眼专家和普通眼科医生相当,总体准确性分别为89.8%、86.4%、86.7%和85.2%。住院医师正确分类的眼最少。视盘照片分类的观察者内一致性在0.48(住院医师内)至0.78(青光眼专家内)之间。观察者间一致性在0.45(住院医师间)至0.74(青光眼专家间)之间。观察者与CSLO MRA之间的一致性(κ,0.68)在统计学上显著高于(p<0.001;配对t检验)观察者与SLP-VCC NFI之间的一致性(κ,0.60)以及CSLO巴蒂亚LDF之间的一致性(κ,0.62)。

结论

使用GDx VCC和HRT进行测量的自动分析对于青光眼的诊断准确性与青光眼专家对视盘立体照片的分类相似,并将所有眼保健专业人员的诊断水平提升至理想水平。视盘分析的观察者内和观察者间一致性仅为中等至良好。我们认为这些成像技术可能有助于临床医生诊断青光眼。

相似文献

2
Glaucoma diagnostics.青光眼诊断。
Acta Ophthalmol. 2013 Feb;91 Thesis 1:1-32. doi: 10.1111/aos.12072.

引用本文的文献

2
[Clinical evaluation of the optic disc in glaucoma].[青光眼视盘的临床评估]
Ophthalmologe. 2016 Oct;113(10):816-823. doi: 10.1007/s00347-016-0331-8.
3
Structural and Functional Progression in the Early Manifest Glaucoma Trial.早期显性青光眼试验中的结构与功能进展
Ophthalmology. 2016 Jun;123(6):1173-80. doi: 10.1016/j.ophtha.2016.01.039. Epub 2016 Mar 2.
4
Optic nerve head and fibre layer imaging for diagnosing glaucoma.用于诊断青光眼的视神经乳头和纤维层成像。
Cochrane Database Syst Rev. 2015 Nov 30;2015(11):CD008803. doi: 10.1002/14651858.CD008803.pub2.
6
Clinical Signs and Diagnosis of the Canine Primary Glaucomas.犬原发性青光眼的临床体征与诊断
Vet Clin North Am Small Anim Pract. 2015 Nov;45(6):1183-212, vi. doi: 10.1016/j.cvsm.2015.06.006.
8
Normative Databases for Imaging Instrumentation.成像仪器的标准数据库。
J Glaucoma. 2015 Aug;24(6):480-3. doi: 10.1097/IJG.0000000000000152.
10
Signal-to-Noise Ratios for Structural and Functional Tests in Glaucoma.青光眼结构和功能测试的信噪比
Transl Vis Sci Technol. 2013 Sep;2(6):3. doi: 10.1167/tvst.2.6.3. Epub 2013 Oct 29.

本文引用的文献

1
Diagnostic accuracy of the GDx VCC for glaucoma.GDx VCC用于青光眼诊断的准确性。
Ophthalmology. 2004 Oct;111(10):1860-5. doi: 10.1016/j.ophtha.2004.04.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验