Juraszek J, Bolhuis P G
Van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15859-64. doi: 10.1073/pnas.0606692103. Epub 2006 Oct 11.
We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding.
我们在显式溶剂中研究了设计的小蛋白色氨酸笼(Trp-cage)折叠与解折叠的动力学途径。直接的分子动力学和副本交换方法都存在严重的收敛问题,而过渡路径采样使我们能够对折叠态与解折叠态之间无偏差的动力学途径进行采样,并能更深入地理解(解)折叠机制。与先前使用隐式溶剂的预测不同,我们发现色氨酸笼主要(80%的路径)通过在形成螺旋之前形成三级接触和盐桥的途径进行折叠。其余20%的路径则以相反的顺序发生,即先形成螺旋。限速步骤的过渡态是溶剂化的类似天然态的结构。发现每条折叠途径的最后一步都是水的排出。反应坐标分析表明溶剂的动力学不是反应坐标的一部分。然而,在过渡过程中,特定的水分子会被强烈结合,并能在折叠过程中发挥结构作用。