Blaustein R O, Finkelstein A
Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461.
J Gen Physiol. 1990 Nov;96(5):943-57. doi: 10.1085/jgp.96.5.943.
Current flow through the channel formed in planar phospholipid bilayer membranes by the PA65 fragment of anthrax toxin is blocked, in a voltage-dependent manner, by tetraalkylammonium ions (at micromolar concentrations), which bind to a blocking site within the channel lumen. We have presented evidence that diffusion plays a significant role in the kinetics of blocking by tetrabutylammonium ion (Bu4N+) from the cis (toxin-containing) side of the membrane (Blaustein, R. O., E. J. A. Lea, and A. Finkelstein. 1990. J. Gen. Physiol. 96:921-942); in this paper we examine the implications and consequences of diffusion control for binding kinetics. As expected for a diffusion-affected reaction, both the entry rate constant (kcis1) of Bu4N+ from the cis solution to the blocking site and the exit rate constant (kcis-1) of Bu4N+ from the blocking site to the cis solution are reduced if the viscosity of that medium is increased by the addition of dextran. In conformity with both thermodynamics and kinetic arguments, however, the voltage-dependent equilibrium binding constant, Keq (= kcis-1/kcis1), is not altered by the dextran-induced viscosity increase of the cis solution. The entry rate constants (kcis1) for tetrapentylammonium (Pe4N+), tetrahexylammonium (Hx4N+), and tetraheptylammonium (Hp4N+) are also diffusion controlled, and all of them, including that for Bu4N+, attain a voltage-independent plateau value at large positive cis voltages consistent with diffusion limitation. Although the plateau value of kcis1 for Hx4N+ is only a factor of 3 less than that for Bu4N+, the plateau value for Hp4N+ is a factor of 35 less. This precipitous fall in value indicates, from diffusion-limitation theory, that the diameter of the channel entrance facing the cis solution is not much larger than the diameter of Hp4N+, i.e., approximately 12 A.
炭疽毒素PA65片段在平面磷脂双分子层膜中形成的通道内的电流,会被微摩尔浓度的四烷基铵离子以电压依赖的方式阻断,这些离子结合在通道腔内的一个阻断位点上。我们已经提出证据表明,扩散在膜顺式(含毒素)侧的四丁基铵离子(Bu4N+)阻断动力学中起重要作用(布劳斯坦,R. O.,E. J. A. 利,和A. 芬克尔斯坦。1990年。《普通生理学杂志》96:921 - 942);在本文中,我们研究了扩散控制对结合动力学的影响和后果。正如对受扩散影响的反应所预期的那样,如果通过添加葡聚糖增加该介质的粘度,Bu4N+从顺式溶液进入阻断位点的进入速率常数(kcis1)以及Bu4N+从阻断位点回到顺式溶液的退出速率常数(kcis - 1)都会降低。然而,与热力学和动力学观点一致的是,顺式溶液中葡聚糖诱导的粘度增加并不会改变电压依赖的平衡结合常数Keq(= kcis - 1/kcis1)。四戊基铵(Pe4N+)、四己基铵(Hx4N+)和四庚基铵(Hp4N+)的进入速率常数(kcis1)也受扩散控制,并且它们所有,包括Bu4N+的进入速率常数,在大的正顺式电压下都达到一个与扩散限制一致的电压无关的平台值。尽管Hx4N+的kcis1平台值仅比Bu4N+的小3倍,但Hp4N+的平台值却小35倍。根据扩散限制理论,这个值的急剧下降表明,面向顺式溶液的通道入口直径不比Hp4N+的直径大多少,即大约12埃。