Suppr超能文献

体积数据的具有代表性的上下文保留探索。

Illustrative context-preserving exploration of volume data.

作者信息

Bruckner Stefan, Grimm Sören, Kanitsar Armin, Gröller M Eduard

机构信息

Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria.

出版信息

IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1559-69. doi: 10.1109/TVCG.2006.96.

Abstract

In volume rendering, it is very difficult to simultaneously visualize interior and exterior structures while preserving clear shape cues. Highly transparent transfer functions produce cluttered images with many overlapping structures, while clipping techniques completely remove possibly important context information. In this paper, we present a new model for volume rendering, inspired by from illustration. It provides a means of interactively inspecting the interior of a volumetric data set in a feature-driven way which retains context information. The context-preserving volume rendering model uses a function of shading intensity, gradient magnitude, distance to the eye point, and previously accumulated opacity to selectively reduce the opacity in less important data regions. It is controlled by two user-specified parameters. This new method represents an alternative to conventional clipping techniques, sharing their easy and intuitive user control, but does not suffer from the drawback of missing context information.

摘要

在体绘制中,要同时可视化内部和外部结构并保留清晰的形状线索是非常困难的。高度透明的传递函数会产生包含许多重叠结构的杂乱图像,而裁剪技术则会完全去除可能重要的上下文信息。在本文中,我们提出了一种受插图启发的新体绘制模型。它提供了一种以特征驱动的方式交互式检查体数据集内部的方法,该方法保留了上下文信息。上下文保留体绘制模型使用阴影强度、梯度幅度、到视点的距离以及先前累积的不透明度的函数,有选择地降低不太重要的数据区域中的不透明度。它由两个用户指定的参数控制。这种新方法是传统裁剪技术的一种替代方法,具有与传统裁剪技术相同的简单直观的用户控制方式,但不会出现缺少上下文信息的缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验