Suppr超能文献

大肠杆菌和枯草芽孢杆菌中水解与磷酸解mRNA降解的酶学基础。

Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis.

作者信息

Deutscher M P, Reuven N B

机构信息

Department of Biochemistry, University of Connecticut Health Center, Farmington 06030.

出版信息

Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3277-80. doi: 10.1073/pnas.88.8.3277.

Abstract

The rapid synthesis and breakdown of mRNA in prokaryotes can impose a significant energy drain on these cells. Previous in vivo studies [Duffy, J. J., Chaney, S. G. & Boyer, P. D. (1972) J. Mol. Biol. 64, 565-579; Chaney, S. G. & Boyer, P. D. (1972) J. Mol. Biol. 64, 581-591] indicated that while RNA turnover in Escherichia coli was hydrolytic, it was nonhydrolytic in Bacillus subtilis. Here we provide an explanation for these observations based on enzymatic analysis of extracts of these two organisms. RNA degradation to the mononucleotide level in E. coli extracts is due solely to two active ribonucleases, RNase II and polynucleotide phosphorylase, which act hydrolytically and phosphorolytically, respectively. RNase II activity represents close to 90% of the total activity of the extract, as expected for predominantly hydrolytic degradation in this organism. In contrast, RNase II is absent from B. subtilis extracts, and the primary mode of RNA degradation is phosphorolytic, employing the Bacillus equivalent of polynucleotide phosphorylase and releases nucleoside diphosphates as products. A low level of a Mn2(+)-stimulated, hydrolytic ribonuclease is also detectable in B. subtilis extracts. Overall, E. coli and B. subtilis extracts differ by about 20- to 100-fold, depending on the substrate, in their relative use of hydrolytic and phosphorolytic routes of RNA degradation. The relation of the mode of mRNA degradation to the environment of the cell is discussed.

摘要

原核生物中mRNA的快速合成与分解会给这些细胞带来巨大的能量消耗。先前的体内研究[达菲,J. J.,钱尼,S. G. & 博耶,P. D.(1972年)《分子生物学杂志》64卷,565 - 579页;钱尼,S. G. & 博耶,P. D.(1972年)《分子生物学杂志》64卷,581 - 591页]表明,虽然大肠杆菌中的RNA周转是水解性的,但在枯草芽孢杆菌中却是非水解性的。在此,我们基于对这两种生物提取物的酶促分析,对这些观察结果给出解释。大肠杆菌提取物中RNA降解至单核苷酸水平完全归因于两种活性核糖核酸酶,即核糖核酸酶II和多核苷酸磷酸化酶,它们分别以水解和磷酸解方式起作用。核糖核酸酶II的活性占提取物总活性的近90%,这与该生物中主要为水解性降解的预期相符。相比之下,枯草芽孢杆菌提取物中不存在核糖核酸酶II,RNA降解的主要方式是磷酸解,利用枯草芽孢杆菌中相当于多核苷酸磷酸化酶的酶,产物为核苷二磷酸。在枯草芽孢杆菌提取物中也可检测到低水平的受Mn2(+)刺激的水解性核糖核酸酶。总体而言,根据底物不同,大肠杆菌和枯草芽孢杆菌提取物在RNA降解的水解和磷酸解途径的相对使用上相差约20至100倍。本文还讨论了mRNA降解模式与细胞环境的关系。

相似文献

4
Bacillus subtilis mRNA decay: new parts in the toolkit.枯草芽孢杆菌 mRNA 降解:工具包中的新部件。
Wiley Interdiscip Rev RNA. 2011 May-Jun;2(3):387-94. doi: 10.1002/wrna.66. Epub 2010 Dec 16.

引用本文的文献

1
Processing and decay of 6S-1 and 6S-2 RNAs in .在. 中 6S-1 和 6S-2 RNA 的加工和衰变。
RNA. 2023 Oct;29(10):1481-1499. doi: 10.1261/rna.079666.123. Epub 2023 Jun 27.
6
Bacterial ribonucleases and their roles in RNA metabolism.细菌核糖核酸酶及其在 RNA 代谢中的作用。
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):242-300. doi: 10.1080/10409238.2019.1651816.
8
RNases and Helicases in Gram-Positive Bacteria.革兰氏阳性菌中的核糖核酸酶和解旋酶。
Microbiol Spectr. 2018 Apr;6(2). doi: 10.1128/microbiolspec.RWR-0003-2017.

本文引用的文献

7
Mechanisms of mRNA decay in bacteria: a perspective.细菌中mRNA降解的机制:一个视角。
Gene. 1988 Dec 10;72(1-2):15-23. doi: 10.1016/0378-1119(88)90123-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验