Wennekers Thomas, Garagnani Max, Pulvermüller Friedemann
Centre for Theoretical and Computational Neuroscience, University of Plymouth, PL4 8AA Plymouth, United Kingdom.
J Physiol Paris. 2006 Jul-Sep;100(1-3):16-30. doi: 10.1016/j.jphysparis.2006.09.007. Epub 2006 Nov 1.
This paper demonstrates how associative neural networks as standard models for Hebbian cell assemblies can be extended to implement language processes in large-scale brain simulations. To this end the classical auto- and hetero-associative paradigms of attractor nets and synfire chains (SFCs) are combined and complemented by conditioned associations as a third principle which allows for the implementation of complex graph-like transition structures between assemblies. We show example simulations of a multiple area network for object-naming, which categorises objects in a visual hierarchy and generates different specific syntactic motor sequences ("words") in response. The formation of cell assemblies due to ongoing plasticity in a multiple area network for word learning is studied afterwards. Simulations show how assemblies can form by means of percolating activity across auditory and motor-related language areas, a process supported by rhythmic, synchronized propagating waves through the network. Simulations further reproduce differences in own EEG&MEG experiments between responses to word- versus non-word stimuli in human subjects.
本文展示了作为赫布细胞集合标准模型的联想神经网络如何能够得到扩展,以在大规模脑模拟中实现语言过程。为此,吸引子网络和同步放电链(SFCs)的经典自联想和异联想范式被结合起来,并通过条件联想作为第三种原则进行补充,这使得能够在集合之间实现复杂的类图状转换结构。我们展示了一个用于物体命名的多区域网络的示例模拟,该网络在视觉层次结构中对物体进行分类,并相应地生成不同的特定句法运动序列(“单词”)。之后研究了在用于单词学习的多区域网络中由于持续可塑性而形成的细胞集合。模拟显示了集合如何通过在听觉和与运动相关的语言区域之间渗透活动而形成,这一过程由通过网络的有节奏、同步传播的波所支持。模拟还重现了我们自己的脑电图和脑磁图实验中人类受试者对单词与非单词刺激反应之间的差异。