Suppr超能文献

神经生物学机制语言、符号和概念:来自受大脑约束的深度神经网络的线索。

Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks.

机构信息

Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Cluster of Excellence 'Matters of Activity', Humboldt Universität zu Berlin, 10099 Berlin, Germany.

出版信息

Prog Neurobiol. 2023 Nov;230:102511. doi: 10.1016/j.pneurobio.2023.102511. Epub 2023 Jul 22.

Abstract

Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles.

摘要

神经网络被成功地用于模拟和建模认知过程。然而,为了提供关于使人类认知成为可能的神经生物学机制的线索,这些模型需要模拟真实大脑的结构和功能。受大脑约束的网络与经典神经网络的不同之处在于,它们在不同的尺度上实现了大脑的相似性,范围从神经元功能的微观和介观水平、局部神经元连接和电路相互作用到大规模的解剖结构和区域间连接。这篇综述展示了受大脑约束的神经网络如何被应用于在计算机中研究符号和概念处理机制的形成,并朝着对人类特定认知能力的神经生物学解释努力。这些能力包括言语工作记忆和学习大量符号词汇、由特定皮层区域承载的语义结合、由符号类型驱动的注意力集中和调制、以及受符号部分影响的具体和抽象概念的习得。对网络中的神经元集合活动进行了分析,以提供更高认知过程的潜在机制相关物,并根据既定的神经生物学原理提出候选解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6a5/10518464/f1f80ef4adf6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验