Suppr超能文献

体内新皮质中突触后密度蛋白95(PSD-95)的快速重新分布。

Rapid redistribution of synaptic PSD-95 in the neocortex in vivo.

作者信息

Gray Noah W, Weimer Robby M, Bureau Ingrid, Svoboda Karel

机构信息

Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

出版信息

PLoS Biol. 2006 Nov;4(11):e370. doi: 10.1371/journal.pbio.0040370.

Abstract

Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10-21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times tau(r) is approximately 22-63 min from P10-P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (tau(r) is approximately 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size.

摘要

大多数兴奋性突触终止于树突棘。树突棘大小各异,其体积与突触后致密区(PSD)的面积及突触强度成正比。PSD - 95是一种丰富的多结构域突触后支架蛋白,它能聚集谷氨酸受体并组织相关的信号复合物。PSD - 95被认为决定了突触的大小和强度。尽管树突棘及其突触在体内可维持数月,但PSD - 95和其他PSD蛋白在体外的半衰期较短,约为数小时。为探究突触稳定性的潜在机制,我们在体内测量了突触PSD - 95簇的动态变化。利用双光子显微镜,我们对发育中(出生后第10 - 21天)桶状皮层第2/3层树突中标记有绿色荧光蛋白(GFP)的PSD - 95进行成像。一部分PSD - 95簇能稳定存在数天。通过对标记有光激活绿色荧光蛋白(paGFP)的PSD - 95进行双光子光激活,我们测量了PSD - 95分子在单个树突棘中保留的时间。突触PSD - 95周转迅速(从出生后第10天到第21天,中位保留时间τ(r)约为22 - 63分钟),并通过扩散与相邻树突棘中的PSD - 95进行交换。因此,PSD共享一个动态的PSD - 95库。大的树突棘中的大PSD捕获更多扩散的PSD - 95,并且比小PSD保留PSD - 95的时间更长。数天内单个PSD大小的变化与PSD - 95保留时间的相应变化相关。此外,保留时间随着发育年龄增加(出生后第70天约为100分钟),而在感觉剥夺后显著减少。我们的数据表明,单个PSD竞争PSD - 95,并且PSD分子与PSD之间的动力学相互作用被调节以控制PSD大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ca3/1637085/a4a5bdc6a3e7/pbio.0040370.g001.jpg

相似文献

1
Rapid redistribution of synaptic PSD-95 in the neocortex in vivo.
PLoS Biol. 2006 Nov;4(11):e370. doi: 10.1371/journal.pbio.0040370.
7
Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking.
J Neurosci. 2009 Oct 14;29(41):12845-54. doi: 10.1523/JNEUROSCI.1841-09.2009.
9
Identification of MAGUK scaffold proteins as intracellular binding partners of synaptic adhesion protein Slitrk2.
Mol Cell Neurosci. 2020 Mar;103:103465. doi: 10.1016/j.mcn.2019.103465. Epub 2020 Jan 8.
10
The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.
Eur J Neurosci. 2005 Jan;21(1):15-25. doi: 10.1111/j.1460-9568.2004.03814.x.

引用本文的文献

1
Micro-sub regional synapse weakening by mimicking the hyperphosphorylation of microtubule associated protein Tau in dendritic spines.
Brain Commun. 2025 Jun 11;7(3):fcaf234. doi: 10.1093/braincomms/fcaf234. eCollection 2025.
2
DELTA: a method for brain-wide measurement of synaptic protein turnover reveals localized plasticity during learning.
Nat Neurosci. 2025 May;28(5):1089-1098. doi: 10.1038/s41593-025-01923-4. Epub 2025 Mar 31.
3
A synapse-specific refractory period for plasticity at individual dendritic spines.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2410433122. doi: 10.1073/pnas.2410433122. Epub 2025 Jan 7.
4
MINFLUX fluorescence nanoscopy in biological tissue.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2422020121. doi: 10.1073/pnas.2422020121. Epub 2024 Dec 20.
5
Anatomical and molecular development of the human primary visual cortex.
Front Cell Neurosci. 2024 Sep 30;18:1427515. doi: 10.3389/fncel.2024.1427515. eCollection 2024.
6
Multiphoton fluorescence microscopy for in vivo imaging.
Cell. 2024 Aug 22;187(17):4458-4487. doi: 10.1016/j.cell.2024.07.036.
7
Synapse-type-specific competitive Hebbian learning forms functional recurrent networks.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2305326121. doi: 10.1073/pnas.2305326121. Epub 2024 Jun 13.
8
A synapse-specific refractory period for plasticity at individual dendritic spines.
bioRxiv. 2024 May 24:2024.05.24.595787. doi: 10.1101/2024.05.24.595787.
9
Synaptic Compensatory Plasticity in Alzheimer's Disease.
J Neurosci. 2023 Oct 11;43(41):6833-6840. doi: 10.1523/JNEUROSCI.0379-23.2023.
10
Synapse-specific diversity of distinct postsynaptic GluN2 subtypes defines transmission strength in spinal lamina I.
Front Synaptic Neurosci. 2023 Jul 12;15:1197174. doi: 10.3389/fnsyn.2023.1197174. eCollection 2023.

本文引用的文献

1
Spine growth precedes synapse formation in the adult neocortex in vivo.
Nat Neurosci. 2006 Sep;9(9):1117-24. doi: 10.1038/nn1747. Epub 2006 Aug 6.
2
Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms.
J Neurosci. 2006 Jul 19;26(29):7693-706. doi: 10.1523/JNEUROSCI.0522-06.2006.
4
Experience-dependent and cell-type-specific spine growth in the neocortex.
Nature. 2006 Jun 22;441(7096):979-83. doi: 10.1038/nature04783.
5
Principles of two-photon excitation microscopy and its applications to neuroscience.
Neuron. 2006 Jun 15;50(6):823-39. doi: 10.1016/j.neuron.2006.05.019.
6
Remodeling of synaptic structure in sensory cortical areas in vivo.
J Neurosci. 2006 Mar 15;26(11):3021-9. doi: 10.1523/JNEUROSCI.4454-05.2006.
7
Auxiliary subunits assist AMPA-type glutamate receptors.
Science. 2006 Mar 3;311(5765):1253-6. doi: 10.1126/science.1123339.
8
Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.
Mol Cell Proteomics. 2006 Jun;5(6):1158-70. doi: 10.1074/mcp.D500009-MCP200. Epub 2006 Feb 28.
9
Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation.
Mol Cell Neurosci. 2006 Apr;31(4):702-12. doi: 10.1016/j.mcn.2006.01.010. Epub 2006 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验