Suppr超能文献

生物组织中的MINFLUX荧光纳米显微镜技术。

MINFLUX fluorescence nanoscopy in biological tissue.

作者信息

Moosmayer Thea, Kiszka Kamila A, Westphal Volker, Pape Jasmin K, Leutenegger Marcel, Steffens Heinz, Grant Seth G N, Sahl Steffen J, Hell Stefan W

机构信息

Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.

Georg-August University School of Science, University of Göttingen, Göttingen 37077, Germany.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2422020121. doi: 10.1073/pnas.2422020121. Epub 2024 Dec 20.

Abstract

Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments. Here, we investigated the performance of MINFLUX imaging for different synaptic targets and fluorescent labels in tissue sections of the mouse brain. Single fluorophores were localized with a precision of <5 nm at up to 80 µm sample depth. MINFLUX imaging in two color channels allowed to probe PSD95 localization relative to the spine head morphology, while also visualizing presynaptic vesicular glutamate transporter (VGlut) 1 clustering and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering at the postsynapse. Our two-dimensional (2D) and three-dimensional (3D) two-color MINFLUX results in tissue, with <10 nm 3D fluorophore localization, open up broad avenues to investigate protein distributions on the single-synapse level in fixed and living brain slices.

摘要

在完整组织中实现对纳米级蛋白质分布的光学成像,是一个备受追捧的目标,因为它能在生理相关环境中提供可视化。在复杂组织样本中,激发光和荧光的吸收及散射增加,导致信号与背景条件不利,超分辨率荧光显微镜方法在实现分子精确定位方面面临严峻挑战。我们推测,在MINFLUX纳米显微镜中典型使用的共聚焦检测针孔,可抑制背景并提供光学切片,即使在散射和光学条件具有挑战性的组织环境中,也应有助于单个荧光团的检测和分辨率提升。在此,我们研究了MINFLUX成像在小鼠脑组织切片中对不同突触靶点和荧光标记的性能。在高达80 µm的样本深度下,单个荧光团的定位精度小于5 nm。在两个颜色通道中的MINFLUX成像能够探测PSD95相对于棘突头部形态的定位,同时还能可视化突触前囊泡谷氨酸转运体(VGlut)1的聚集以及突触后α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)的聚集。我们在组织中的二维(2D)和三维(3D)双色MINFLUX结果,实现了小于10 nm的三维荧光团定位,为研究固定和活脑切片中单突触水平的蛋白质分布开辟了广阔途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7a/11670107/a6fa1a196f8a/pnas.2422020121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验