Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France.
PLoS Biol. 2021 Nov 12;19(11):e3001454. doi: 10.1371/journal.pbio.3001454. eCollection 2021 Nov.
To survive, cells must constantly resist mechanical stress. In plants, this involves the reinforcement of cell walls, notably through microtubule-dependent cellulose deposition. How wall sensing might contribute to this response is unknown. Here, we tested whether the microtubule response to stress acts downstream of known wall sensors. Using a multistep screen with 11 mutant lines, we identify FERONIA (FER) as the primary candidate for the cell's response to stress in the shoot. However, this does not imply that FER acts upstream of the microtubule response to stress. In fact, when performing mechanical perturbations, we instead show that the expected microtubule response to stress does not require FER. We reveal that the feronia phenotype can be partially rescued by reducing tensile stress levels. Conversely, in the absence of both microtubules and FER, cells appear to swell and burst. Altogether, this shows that the microtubule response to stress acts as an independent pathway to resist stress, in parallel to FER. We propose that both pathways are required to maintain the mechanical integrity of plant cells.
为了生存,细胞必须不断抵抗机械压力。在植物中,这涉及细胞壁的加固,特别是通过微管依赖的纤维素沉积。目前尚不清楚细胞壁感知如何有助于这一反应。在这里,我们测试了细胞壁传感器是否会影响微管对压力的反应。通过使用 11 个突变株的多步骤筛选,我们确定 FERONIA(FER)是 Shoot 中细胞对压力反应的主要候选物。然而,这并不意味着 FER 作用于微管对压力反应的上游。实际上,当进行机械干扰时,我们发现微管对压力的预期反应并不需要 FER。我们揭示了通过降低拉伸应力水平可以部分挽救 feronia 表型。相反,在缺乏微管和 FER 的情况下,细胞似乎会膨胀和破裂。总的来说,这表明微管对压力的反应是抵抗压力的独立途径,与 FER 平行。我们提出,这两种途径都需要维持植物细胞的机械完整性。