Suppr超能文献

基于多模态学习的脑深部电刺激手术术前靶点定位

Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures.

作者信息

Liu Yuan, Dawant Benoit M

机构信息

Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.

出版信息

IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:17-20. doi: 10.1109/BHI.2016.7455824. Epub 2016 Apr 21.

Abstract

Deep brain stimulation, as a primary surgical treatment for various neurological disorders, involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate pre-operative target selection is challenging due to the poor contrast in its surrounding region in MR images. In this paper, we present a learning-based method to automatically and rapidly localize the target using multi-modal images. A learning-based technique is applied first to spatially normalize the images in a common coordinate space. Given a point in this space, we extract a heterogeneous set of features that capture spatial and intensity contextual patterns at different scales in each image modality. Regression forests are used to learn a displacement vector of this point to the target. The target is predicted as a weighted aggregation of votes from various test samples, leading to a robust and accurate solution. We conduct five-fold cross validation using 100 subjects and compare our method to three indirect targeting methods, a state-of-the-art statistical atlas-based approach, and two variations of our method that use only a single modality image. With an overall error of 2.63±1.37mm, our method improves upon the single modality-based variations and statistically significantly outperforms the indirect targeting ones. Our technique matches state-of-the-art registration methods but operates on completely different principles. Both techniques can be used in tandem in processing pipelines operating on large databases or in the clinical flow for automated error detection.

摘要

脑深部电刺激作为多种神经系统疾病的主要外科治疗方法,涉及植入电极以毫米级精度刺激目标核团。由于磁共振图像中其周围区域对比度差,术前准确的目标选择具有挑战性。在本文中,我们提出了一种基于学习的方法,使用多模态图像自动快速定位目标。首先应用基于学习的技术在公共坐标空间中对图像进行空间归一化。给定该空间中的一个点,我们提取一组异构特征,这些特征捕获每个图像模态中不同尺度下的空间和强度上下文模式。回归森林用于学习该点到目标的位移向量。目标被预测为来自各种测试样本的投票的加权聚合,从而得到一个稳健且准确的解决方案。我们使用100名受试者进行五折交叉验证,并将我们的方法与三种间接靶向方法、一种基于统计图谱的先进方法以及我们仅使用单模态图像的两种方法变体进行比较。我们的方法总体误差为2.63±1.37毫米,优于基于单模态的变体,并且在统计学上显著优于间接靶向方法。我们的技术与先进的配准方法相当,但操作原理完全不同。这两种技术可以在处理大型数据库的流程中或临床流程中串联使用,以进行自动错误检测。

相似文献

1
Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:17-20. doi: 10.1109/BHI.2016.7455824. Epub 2016 Apr 21.
3
Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks.
Med Biol Eng Comput. 2019 May;57(5):1037-1048. doi: 10.1007/s11517-018-1924-y. Epub 2018 Dec 7.
4
Automatic labeling of MR brain images through extensible learning and atlas forests.
Med Phys. 2017 Dec;44(12):6329-6340. doi: 10.1002/mp.12591. Epub 2017 Oct 24.
5
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
7
Manifold-based feature point matching for multi-modal image registration.
Int J Med Robot. 2013 Mar;9(1):e10-8. doi: 10.1002/rcs.1465. Epub 2012 Nov 22.
8
Homologous point transformer for multi-modality prostate image registration.
PeerJ Comput Sci. 2022 Dec 1;8:e1155. doi: 10.7717/peerj-cs.1155. eCollection 2022.
10
Automatic detection of the anterior and posterior commissures on MRI scans using regression forests.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1505-8. doi: 10.1109/EMBC.2014.6943887.

引用本文的文献

1
Multi-modal imaging with specialized sequences improves accuracy of the automated subcortical grey matter segmentation.
Magn Reson Imaging. 2019 Sep;61:131-136. doi: 10.1016/j.mri.2019.05.025. Epub 2019 May 21.
2
Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization.
J Med Imaging (Bellingham). 2017 Oct;4(4):044007. doi: 10.1117/1.JMI.4.4.044007. Epub 2017 Dec 8.

本文引用的文献

1
Robust anatomical landmark detection with application to MR brain image registration.
Comput Med Imaging Graph. 2015 Dec;46 Pt 3(0 3):277-90. doi: 10.1016/j.compmedimag.2015.09.002. Epub 2015 Sep 25.
2
Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1862-74. doi: 10.1109/TPAMI.2014.2382106.
3
Plane Localization in 3-D Fetal Neurosonography for Longitudinal Analysis of the Developing Brain.
IEEE J Biomed Health Inform. 2016 Jul;20(4):1120-8. doi: 10.1109/JBHI.2015.2435651. Epub 2015 May 20.
5
Automatic localization of the anterior commissure, posterior commissure, and midsagittal plane in MRI scans using regression forests.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1362-74. doi: 10.1109/JBHI.2015.2428672. Epub 2015 Apr 30.
6
Fully automatic segmentation of the proximal femur using random forest regression voting.
IEEE Trans Med Imaging. 2013 Aug;32(8):1462-72. doi: 10.1109/TMI.2013.2258030. Epub 2013 Apr 12.
7
Regression forests for efficient anatomy detection and localization in computed tomography scans.
Med Image Anal. 2013 Dec;17(8):1293-303. doi: 10.1016/j.media.2013.01.001. Epub 2013 Jan 27.
8
Fast multiple organ detection and localization in whole-body MR dixon sequences.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):239-47. doi: 10.1007/978-3-642-23626-6_30.
9
Risks of intracranial hemorrhage in patients with Parkinson's disease receiving deep brain stimulation and ablation.
Parkinsonism Relat Disord. 2010 Feb;16(2):96-100. doi: 10.1016/j.parkreldis.2009.07.013. Epub 2009 Aug 13.
10
Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation.
Comput Aided Surg. 2007 Nov;12(6):325-34. doi: 10.3109/10929080701730987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验