Suppr超能文献

作为吡咯赖氨酸-tRNA合成酶底物的吡咯赖氨酸类似物。

Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.

作者信息

Polycarpo Carla R, Herring Stephanie, Bérubé Amélie, Wood John L, Söll Dieter, Ambrogelly Alexandre

机构信息

Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA.

出版信息

FEBS Lett. 2006 Dec 11;580(28-29):6695-700. doi: 10.1016/j.febslet.2006.11.028. Epub 2006 Nov 20.

Abstract

In certain methanogenic archaea a new amino acid, pyrrolysine (Pyl), is inserted at in-frame UAG codons in the mRNAs of some methyltransferases. Pyl is directly acylated onto a suppressor tRNA(Pyl) by pyrrolysyl-tRNA synthetase (PylRS). Due to the lack of a readily available Pyl source, we looked for structural analogues that could be aminoacylated by PylRS onto tRNA(Pyl). We report here the in vitro aminoacylation of tRNA(Pyl) by PylRS with two Pyl analogues: N-epsilon-d-prolyl-l-lysine (d-prolyl-lysine) and N-epsilon-cyclopentyloxycarbonyl-l-lysine (Cyc). Escherichia coli, transformed with the tRNA(Pyl) and PylRS genes, suppressed a lacZ amber mutant dependent on the presence of d-prolyl-lysine or Cyc in the medium, implying that the E. coli translation machinery is able to use Cyc-tRNA(Pyl) and d-prolyl-lysine-tRNA(Pyl) as substrates during protein synthesis. Furthermore, the formation of active beta-galactosidase shows that a specialized mRNA motif is not essential for stop-codon recoding, unlike for selenocysteine incorporation.

摘要

在某些产甲烷古菌中,一种新的氨基酸——吡咯赖氨酸(Pyl),被插入到一些甲基转移酶mRNA的框内UAG密码子处。吡咯赖氨酸-tRNA合成酶(PylRS)将Pyl直接酰化到抑制性tRNA(Pyl)上。由于缺乏现成的Pyl来源,我们寻找能够被PylRS氨基酰化到tRNA(Pyl)上的结构类似物。我们在此报告了PylRS用两种Pyl类似物对tRNA(Pyl)进行的体外氨基酰化反应:N-ε-d-脯氨酰-L-赖氨酸(d-脯氨酰赖氨酸)和N-ε-环戊氧基羰基-L-赖氨酸(Cyc)。用tRNA(Pyl)和PylRS基因转化的大肠杆菌,在培养基中存在d-脯氨酰赖氨酸或Cyc的情况下抑制了lacZ琥珀突变体,这意味着大肠杆菌的翻译机制在蛋白质合成过程中能够将Cyc-tRNA(Pyl)和d-脯氨酰赖氨酸-tRNA(Pyl)用作底物。此外,活性β-半乳糖苷酶的形成表明,与硒代半胱氨酸的掺入不同,一个专门的mRNA基序对于终止密码子重新编码不是必需的。

相似文献

1
Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
FEBS Lett. 2006 Dec 11;580(28-29):6695-700. doi: 10.1016/j.febslet.2006.11.028. Epub 2006 Nov 20.
2
Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase.
Nucleic Acids Res. 2007;35(4):1270-8. doi: 10.1093/nar/gkl1151. Epub 2007 Jan 31.
3
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.
4
Pyrrolysine is not hardwired for cotranslational insertion at UAG codons.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6. doi: 10.1073/pnas.0611634104. Epub 2007 Feb 20.
5
Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
Biosci Biotechnol Biochem. 2012;76(1):205-8. doi: 10.1271/bbb.110653. Epub 2012 Jan 7.
6
The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity.
FEBS Lett. 2007 Jul 10;581(17):3197-203. doi: 10.1016/j.febslet.2007.06.004. Epub 2007 Jun 12.
7
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12450-4. doi: 10.1073/pnas.0405362101. Epub 2004 Aug 16.
8
Specificity of pyrrolysyl-tRNA synthetase for pyrrolysine and pyrrolysine analogs.
J Mol Biol. 2009 Jan 30;385(4):1156-64. doi: 10.1016/j.jmb.2008.11.032. Epub 2008 Nov 25.
9
Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.
10
tRNA: Structure, function, and applications.
RNA Biol. 2018;15(4-5):441-452. doi: 10.1080/15476286.2017.1356561. Epub 2017 Sep 13.

引用本文的文献

1
Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code.
Int J Mol Sci. 2025 Jan 10;26(2):539. doi: 10.3390/ijms26020539.
2
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
3
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
4
Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification.
Chem Rev. 2024 May 8;124(9):6051-6077. doi: 10.1021/acs.chemrev.4c00004. Epub 2024 Apr 30.
5
Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion.
Angew Chem Int Ed Engl. 2024 May 27;63(22):e202403098. doi: 10.1002/anie.202403098. Epub 2024 Apr 19.
6
Biosynthesis, Engineering, and Delivery of Selenoproteins.
Int J Mol Sci. 2023 Dec 22;25(1):223. doi: 10.3390/ijms25010223.
7
Rational design of the genetic code expansion toolkit for encoding of D-amino acids.
Front Genet. 2023 Oct 13;14:1277489. doi: 10.3389/fgene.2023.1277489. eCollection 2023.
9
Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
Nat Chem. 2023 Jul;15(7):948-959. doi: 10.1038/s41557-023-01232-y. Epub 2023 Jun 15.
10
Encoding Noncanonical Amino Acids into Phage Displayed Proteins.
Methods Mol Biol. 2023;2676:117-129. doi: 10.1007/978-1-0716-3251-2_8.

本文引用的文献

1
Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Oct 1;62(Pt 10):1031-3. doi: 10.1107/S1744309106036700. Epub 2006 Sep 30.
2
Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins.
Biochimie. 2005 Sep-Oct;87(9-10):813-7. doi: 10.1016/j.biochi.2005.03.006. Epub 2005 Apr 8.
3
The residue mass of L-pyrrolysine in three distinct methylamine methyltransferases.
J Biol Chem. 2005 Nov 4;280(44):36962-9. doi: 10.1074/jbc.M506402200. Epub 2005 Aug 11.
4
Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo.
J Biol Chem. 2005 May 27;280(21):20638-41. doi: 10.1074/jbc.M500874200. Epub 2005 Mar 21.
5
Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases.
Curr Opin Chem Biol. 2004 Oct;8(5):484-91. doi: 10.1016/j.cbpa.2004.08.012.
6
Reactivity and chemical synthesis of L-pyrrolysine- the 22(nd) genetically encoded amino acid.
Chem Biol. 2004 Sep;11(9):1317-24. doi: 10.1016/j.chembiol.2004.07.011.
7
Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo.
Nature. 2004 Sep 16;431(7006):333-5. doi: 10.1038/nature02895. Epub 2004 Aug 25.
8
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12450-4. doi: 10.1073/pnas.0405362101. Epub 2004 Aug 16.
9
Reprogrammed genetic decoding in cellular gene expression.
Mol Cell. 2004 Jan 30;13(2):157-68. doi: 10.1016/s1097-2765(04)00031-0.
10
Protein synthesis in Escherichia coli with mischarged tRNA.
J Bacteriol. 2003 Jun;185(12):3524-6. doi: 10.1128/JB.185.12.3524-3526.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验