Cho Hyundae D, Verlinde Christophe L M J, Weiner Alan M
Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):54-9. doi: 10.1073/pnas.0606961104. Epub 2006 Dec 19.
CCA-adding enzymes build and repair the 3'-terminal CCA sequence of tRNA. These unusual RNA polymerases use either a ribonucleoprotein template (class I) or pure protein template (class II) to form mock base pairs with the Watson-Crick edges of incoming CTP and ATP. Guided by the class II Bacillus stearothermophilus CCA-adding enzyme structure, we introduced mutations designed to reverse the polarity of hydrogen bonds between the nucleobases and protein template. We were able to transform the CCA-adding enzyme into a (U,G)-adding enzyme that incorporates UTP and GTP instead of CTP and ATP; we transformed the related Aquifex aeolicus CC- and A-adding enzymes into UU- and G-adding enzymes and Escherichia coli poly(A) polymerase into a poly(G) polymerase; and we transformed the B. stearothermophilus CCA-adding enzyme into a poly(C,A) polymerase by mutations in helix J that appear, based on the apoenzyme structure, to sterically limit addition to CCA. We also transformed the B. stearothermophilus CCA-adding enzyme into a dCdCdA-adding enzyme by mutating an arginine that interacts with the incoming ribose 2' hydroxyl. Most importantly, we found that mutations in helix J can affect the specificity of the nucleotide binding site some 20 A away, suggesting that the specificity of both class I and II enzymes may be dictated by an intricate network of hydrogen bonds involving the protein, incoming nucleotide, and 3' end of the tRNA. Collaboration between RNA and protein in the form of a ribonucleoprotein template may help to explain the evolutionary diversity of the nucleotidyltransferase family.
CCA添加酶负责构建和修复tRNA的3'-末端CCA序列。这些不同寻常的RNA聚合酶使用核糖核蛋白模板(I类)或纯蛋白质模板(II类)与进入的CTP和ATP的沃森-克里克边缘形成模拟碱基对。以嗜热栖热放线菌II类CCA添加酶的结构为指导,我们引入了旨在逆转核碱基与蛋白质模板之间氢键极性的突变。我们能够将CCA添加酶转化为掺入UTP和GTP而非CTP和ATP的(U,G)添加酶;我们将相关的嗜热栖热放线菌CC和A添加酶分别转化为UU和G添加酶,将大肠杆菌聚(A)聚合酶转化为聚(G)聚合酶;基于脱辅基酶结构,通过螺旋J中的突变,我们将嗜热栖热放线菌CCA添加酶转化为聚(C,A)聚合酶,这些突变在空间上似乎限制了对CCA的添加。我们还通过突变与进入的核糖2'-羟基相互作用的精氨酸,将嗜热栖热放线菌CCA添加酶转化为dCdCdA添加酶。最重要的是,我们发现螺旋J中的突变可以影响约20埃外核苷酸结合位点的特异性,这表明I类和II类酶的特异性可能由涉及蛋白质、进入的核苷酸和tRNA 3'末端的复杂氢键网络决定。核糖核蛋白模板形式的RNA与蛋白质之间的协作可能有助于解释核苷酸转移酶家族的进化多样性。