Suppr超能文献

前体微小RNA的独特折叠:定量证据及其对从头鉴定的意义

Unique folding of precursor microRNAs: quantitative evidence and implications for de novo identification.

作者信息

Ng Kwang Loong Stanley, Mishra Santosh K

机构信息

Bioinformatics Institute, Matrix, Singapore.

出版信息

RNA. 2007 Feb;13(2):170-87. doi: 10.1261/rna.223807. Epub 2006 Dec 28.

Abstract

MicroRNAs (miRNAs) participate in diverse cellular and physiological processes through the post-transcriptional gene regulatory pathway. Hairpin is a crucial structural feature for the computational identification of precursor miRNAs (pre-miRs), as its formation is critically associated with the early stages of the mature miRNA biogenesis. Our incomplete knowledge about the number of miRNAs present in the genomes of vertebrates, worms, plants, and even viruses necessitates thorough understanding of their sequence motifs, hairpin structural characteristics, and topological descriptors. In this in-depth study, we investigate a comprehensive and heterogeneous collection of 2241 published (nonredundant) pre-miRs across 41 species (miRBase 8.2), 8494 pseudohairpins extracted from the human RefSeq genes, 12,387 (nonredundant) ncRNAs spanning 457 types (Rfam 7.0), 31 full-length mRNAs randomly selected from GenBank, and four sets of synthetically generated genomic background corresponding to each of the native RNA sequence. Our large-scale characterization analysis reveals that pre-miRs are significantly different from other types of ncRNAs, pseudohairpins, mRNAs, and genomic background according to the nonparametric Kruskal-Wallis ANOVA (p<0.001). We examine the intrinsic and global features at the sequence, structural, and topological levels including %G+C content, normalized base-pairing propensity P(S), normalized minimum free energy of folding MFE(s), normalized Shannon entropy Q(s), normalized base-pair distance D(s), and degree of compactness F(S), as well as their corresponding Z scores of P(S), MFE(s), Q(s), D(s), and F(S). The findings will promote more accurate guidelines and distinctive criteria for the prediction of novel pre-miRs with improved performance.

摘要

微小RNA(miRNA)通过转录后基因调控途径参与多种细胞和生理过程。发夹结构是前体miRNA(pre-miR)计算识别的关键结构特征,因为其形成与成熟miRNA生物合成的早期阶段密切相关。我们对脊椎动物、蠕虫、植物甚至病毒基因组中存在的miRNA数量了解不全面,因此有必要深入了解它们的序列基序、发夹结构特征和拓扑描述符。在这项深入研究中,我们调查了一个综合且异质的数据集,包括来自41个物种(miRBase 8.2)的2241个已发表(非冗余)的pre-miR、从人类RefSeq基因中提取的8494个假发夹、涵盖457种类型(Rfam 7.0)的12387个(非冗余)非编码RNA、从GenBank中随机选择的3个全长mRNA,以及与每个天然RNA序列对应的四组合成基因组背景。我们的大规模特征分析表明,根据非参数Kruskal-Wallis方差分析(p<0.001),pre-miR与其他类型的非编码RNA、假发夹、mRNA和基因组背景有显著差异。我们在序列、结构和拓扑水平上检查了内在和全局特征,包括%G+C含量、标准化碱基配对倾向P(S)、标准化最小折叠自由能MFE(s)、标准化香农熵Q(s)、标准化碱基对距离D(s)和紧凑度F(S),以及它们相应的P(S)、MFE(s)、Q(s)、D(s)和F(S)的Z分数。这些发现将为预测具有更高性能的新型pre-miR提供更准确的指导方针和独特标准。

相似文献

1
Unique folding of precursor microRNAs: quantitative evidence and implications for de novo identification.
RNA. 2007 Feb;13(2):170-87. doi: 10.1261/rna.223807. Epub 2006 Dec 28.
2
De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures.
Bioinformatics. 2007 Jun 1;23(11):1321-30. doi: 10.1093/bioinformatics/btm026. Epub 2007 Jan 31.
3
Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor.
Curr Biol. 2010 Jan 12;20(1):49-54. doi: 10.1016/j.cub.2009.10.072. Epub 2009 Dec 10.
4
Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.
Sci China Life Sci. 2012 Sep;55(9):807-17. doi: 10.1007/s11427-012-4367-y. Epub 2012 Sep 27.
5
RNA secondary structural determinants of miRNA precursor processing in Arabidopsis.
Curr Biol. 2010 Jan 12;20(1):37-41. doi: 10.1016/j.cub.2009.10.076.
6
Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
Curr Biol. 2010 Jan 12;20(1):42-8. doi: 10.1016/j.cub.2009.10.073.
7
Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6. doi: 10.1073/pnas.0404025101. Epub 2004 Jul 22.
8
Characteristic comparison between two types of miRNA precursors in metazoan species.
Biosystems. 2010 May;100(2):144-9. doi: 10.1016/j.biosystems.2010.02.009. Epub 2010 Mar 6.
9
Are all the miRBase-registered microRNAs true? A structure- and expression-based re-examination in plants.
RNA Biol. 2012 Mar;9(3):249-53. doi: 10.4161/rna.19230. Epub 2012 Mar 1.
10
Characterizing viral microRNAs and its application on identifying new microRNAs in viruses.
J Cell Physiol. 2007 Apr;211(1):10-8. doi: 10.1002/jcp.20920.

引用本文的文献

1
NCodR: A multi-class support vector machine classification to distinguish non-coding RNAs in Viridiplantae.
Quant Plant Biol. 2022 Oct 7;3:e23. doi: 10.1017/qpb.2022.18. eCollection 2022.
3
Small RNA sequencing and identification of papaya (Carica papaya L.) miRNAs with potential cross-kingdom human gene targets.
Mol Genet Genomics. 2022 Jul;297(4):981-997. doi: 10.1007/s00438-022-01904-3. Epub 2022 May 16.
4
Investigation of Conserved miRNAs and Their Targets From the Expressed Sequence Tags in Genome.
Bioinform Biol Insights. 2021 Dec 6;15:11779322211046729. doi: 10.1177/11779322211046729. eCollection 2021.
6
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences.
BMC Bioinformatics. 2020 Mar 18;21(1):111. doi: 10.1186/s12859-020-3426-9.
7
miRBaseMiner, a tool for investigating miRBase content.
RNA Biol. 2019 Nov;16(11):1534-1546. doi: 10.1080/15476286.2019.1637680. Epub 2019 Aug 12.
8
Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan.
BMC Genomics. 2017 Nov 15;18(1):878. doi: 10.1186/s12864-017-4232-2.
9
A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria.
RNA Biol. 2018 Jan 2;15(1):95-103. doi: 10.1080/15476286.2017.1387709. Epub 2017 Nov 13.

本文引用的文献

1
MicroRNAs: expression, avoidance and subversion by vertebrate viruses.
Nat Rev Microbiol. 2006 Sep;4(9):651-9. doi: 10.1038/nrmicro1473.
2
Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data.
Bioinformatics. 2006 Jul 15;22(14):e197-202. doi: 10.1093/bioinformatics/btl257.
3
Approaches to microRNA discovery.
Nat Genet. 2006 Jun;38 Suppl:S2-7. doi: 10.1038/ng1794.
4
Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics. 2006 Jul 1;22(13):1658-9. doi: 10.1093/bioinformatics/btl158. Epub 2006 May 26.
5
Hairpin RNA: a secondary structure of primary importance.
Cell Mol Life Sci. 2006 Apr;63(7-8):901-8. doi: 10.1007/s00018-005-5558-5.
6
Identification of new central nervous system specific mouse microRNAs.
FEBS Lett. 2006 Apr 17;580(9):2195-200. doi: 10.1016/j.febslet.2006.03.019. Epub 2006 Mar 20.
7
Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier.
Bioinformatics. 2006 Jun 1;22(11):1325-34. doi: 10.1093/bioinformatics/btl094. Epub 2006 Mar 16.
8
The colorectal microRNAome.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3687-92. doi: 10.1073/pnas.0511155103. Epub 2006 Feb 27.
9
Evidence that miRNAs are different from other RNAs.
Cell Mol Life Sci. 2006 Jan;63(2):246-54. doi: 10.1007/s00018-005-5467-7.
10
miRBase: microRNA sequences, targets and gene nomenclature.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4. doi: 10.1093/nar/gkj112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验