Hu X Joan, Lagakos Stephen W, Lockhart Richard A
Simon Fraser University.
Stat Sin. 2009;19:561-580.
This paper considers nonparametric estimation of the mean function of a counting process based on periodic observations, i.e., panel counts. We present estimators derived through minimizing a class of generalized sums of squares subject to a monotonicity constraint. We establish consistency of the estimators and provide procedures to implement them with various weight functions. For specific weight functions, they reduce to the estimator given in Sun and Kalbfleisch (1995), and are closely related to the nonparametric maximum likelihood estimator studied in Wellner and Zhang (2000). With other weight functions, the proposed estimators provide alternatives that can have better efficiency in non-Poisson situations than previous approaches. Simulations are used to examine the finite-sample performance of the proposed estimators.
本文考虑基于周期性观测(即面板计数)的计数过程均值函数的非参数估计。我们提出了通过在单调约束下最小化一类广义平方和而得到的估计量。我们建立了估计量的一致性,并提供了使用各种权重函数来实现它们的程序。对于特定的权重函数,它们简化为Sun和Kalbfleisch(1995)给出的估计量,并且与Wellner和Zhang(2000)研究的非参数最大似然估计量密切相关。对于其他权重函数,所提出的估计量提供了在非泊松情形下比先前方法具有更高效率的替代方案。通过模拟来检验所提出估计量的有限样本性能。