Suppr超能文献

应变肌动蛋白丝的塑性变形和断裂。

Plastic Deformation and Fragmentation of Strained Actin Filaments.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.

Department of Chemistry, New York University, New York, New York.

出版信息

Biophys J. 2019 Aug 6;117(3):453-463. doi: 10.1016/j.bpj.2019.06.018. Epub 2019 Jun 25.

Abstract

The assembly of actin filaments and filament networks generate forces that drive cell and vesicle movement. These structures and the comprising actin filaments must be mechanically stable to sustain these forces and maintain their structural integrity. Filaments in these dynamic structures must also be disassembled to recycle and replenish the pool of actin monomers available for polymerization. Actin-severing proteins such as cofilin and contractile myosin motor proteins fragment these nominally stable structures. We developed a mesoscopic-length-scale actin filament model to investigate force-induced filament fragmentation. We show that fragmentation in our model occurs at curvatures similar to previous measurements of fragmentation within (cofil)actin and actin-cofilactin boundaries. Boundaries between bare and cofilin-decorated segments are brittle and fragment at small bending and twisting deformations. Extending filaments disperses strain uniformly over subunit interfaces, and filaments fragment with no detectable partial rupture or plastic deformation. In contrast, bending or twisting filaments imposes nonuniform interface strain and leads to partial interface rupture, accelerating filament fragmentation. As a result, the rupture force under compressive loads is an order of magnitude lower than under tensile loads. Partial interface rupture may be a primary mechanism of accelerating actin filament fragmentation by other actin-destabilizing proteins.

摘要

肌动蛋白丝和丝网络的组装产生驱动细胞和囊泡运动的力。这些结构和组成的肌动蛋白丝必须具有机械稳定性,以承受这些力并保持其结构完整性。这些动态结构中的丝还必须解聚以回收和补充可用于聚合的肌动蛋白单体池。肌动蛋白丝切割蛋白(如丝切蛋白和收缩性肌球蛋白马达蛋白)会使这些名义上稳定的结构发生片段化。我们开发了一个介观长度尺度的肌动蛋白丝模型来研究力诱导的丝片段化。我们表明,在我们的模型中,片段化发生在类似于以前在(丝切蛋白)肌动蛋白和肌动蛋白-丝切蛋白边界内的片段化测量的曲率处。裸丝和丝切蛋白修饰段之间的边界在小弯曲和扭转变形下是脆性的,会发生片段化。延伸丝将应变均匀地分布在亚基界面上,并且丝没有检测到明显的部分断裂或塑性变形而发生片段化。相比之下,弯曲或扭曲的丝会在界面上产生不均匀的应变,导致部分界面断裂,从而加速丝的片段化。因此,在压缩载荷下的断裂力比在拉伸载荷下低一个数量级。部分界面断裂可能是其他肌动蛋白不稳定蛋白加速肌动蛋白丝片段化的主要机制。

相似文献

1
Plastic Deformation and Fragmentation of Strained Actin Filaments.
Biophys J. 2019 Aug 6;117(3):453-463. doi: 10.1016/j.bpj.2019.06.018. Epub 2019 Jun 25.
2
Mechanical heterogeneity favors fragmentation of strained actin filaments.
Biophys J. 2015 May 5;108(9):2270-81. doi: 10.1016/j.bpj.2015.03.058.
3
Actin Filament Strain Promotes Severing and Cofilin Dissociation.
Biophys J. 2017 Jun 20;112(12):2624-2633. doi: 10.1016/j.bpj.2017.05.016.
4
Molecular origins of cofilin-linked changes in actin filament mechanics.
J Mol Biol. 2013 Apr 12;425(7):1225-40. doi: 10.1016/j.jmb.2013.01.020. Epub 2013 Jan 24.
5
Biophysics of actin filament severing by cofilin.
FEBS Lett. 2013 Apr 17;587(8):1215-9. doi: 10.1016/j.febslet.2013.01.062. Epub 2013 Feb 5.
6
Structural basis of fast- and slow-severing actin-cofilactin boundaries.
J Biol Chem. 2021 Jan-Jun;296:100337. doi: 10.1016/j.jbc.2021.100337. Epub 2021 Jan 27.
7
Twist response of actin filaments.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2208536120. doi: 10.1073/pnas.2208536120. Epub 2023 Jan 19.
8
Clusters of a Few Bound Cofilins Sever Actin Filaments.
J Mol Biol. 2021 Apr 2;433(7):166833. doi: 10.1016/j.jmb.2021.166833. Epub 2021 Jan 30.
9
Cofilin-linked changes in actin filament flexibility promote severing.
Biophys J. 2011 Jul 6;101(1):151-9. doi: 10.1016/j.bpj.2011.05.049.
10
Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1478-1484. doi: 10.1073/pnas.1915987117. Epub 2020 Jan 3.

引用本文的文献

1
Bending stiffness of Toxoplasma gondii actin filaments.
J Biol Chem. 2025 Feb;301(2):108101. doi: 10.1016/j.jbc.2024.108101. Epub 2024 Dec 18.
2
Cracked actin filaments as mechanosensitive receptors.
Biophys J. 2024 Oct 1;123(19):3283-3294. doi: 10.1016/j.bpj.2024.06.014. Epub 2024 Jun 17.
3
Fascin-induced bundling protects actin filaments from disassembly by cofilin.
J Cell Biol. 2024 Jun 3;223(6). doi: 10.1083/jcb.202312106. Epub 2024 Mar 18.
5
Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail.
Nat Commun. 2024 Feb 16;15(1):1426. doi: 10.1038/s41467-024-45878-9.
6
Adaptive nonequilibrium design of actin-based metamaterials: Fundamental and practical limits of control.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2310238121. doi: 10.1073/pnas.2310238121. Epub 2024 Feb 15.
7
Molecular simulation approaches to probing the effects of mechanical forces in the actin cytoskeleton.
Cytoskeleton (Hoboken). 2024 Aug;81(8):318-327. doi: 10.1002/cm.21837. Epub 2024 Feb 9.
8
Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change.
Eur J Cell Biol. 2024 Mar;103(1):151379. doi: 10.1016/j.ejcb.2023.151379. Epub 2023 Dec 26.
9
Twist response of actin filaments.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2208536120. doi: 10.1073/pnas.2208536120. Epub 2023 Jan 19.
10
LIM domain proteins in cell mechanobiology.
Cytoskeleton (Hoboken). 2021 Jun;78(6):303-311. doi: 10.1002/cm.21677. Epub 2021 Jun 10.

本文引用的文献

1
Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2595-2602. doi: 10.1073/pnas.1812053116. Epub 2019 Jan 28.
2
Structural basis for cofilin binding and actin filament disassembly.
Nat Commun. 2018 May 10;9(1):1860. doi: 10.1038/s41467-018-04290-w.
3
The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments.
J Biol Chem. 2018 Apr 13;293(15):5377-5383. doi: 10.1074/jbc.AC118.001843. Epub 2018 Feb 20.
4
Catastrophic disassembly of actin filaments via Mical-mediated oxidation.
Nat Commun. 2017 Dec 19;8(1):2183. doi: 10.1038/s41467-017-02357-8.
5
Phosphomimetic S3D cofilin binds but only weakly severs actin filaments.
J Biol Chem. 2017 Dec 1;292(48):19565-19579. doi: 10.1074/jbc.M117.808378. Epub 2017 Sep 22.
6
Actin Filament Strain Promotes Severing and Cofilin Dissociation.
Biophys J. 2017 Jun 20;112(12):2624-2633. doi: 10.1016/j.bpj.2017.05.016.
7
ADF/Cofilin Accelerates Actin Dynamics by Severing Filaments and Promoting Their Depolymerization at Both Ends.
Curr Biol. 2017 Jul 10;27(13):1956-1967.e7. doi: 10.1016/j.cub.2017.05.048. Epub 2017 Jun 15.
8
F-actin dismantling through a redox-driven synergy between Mical and cofilin.
Nat Cell Biol. 2016 Aug;18(8):876-85. doi: 10.1038/ncb3390. Epub 2016 Jul 25.
9
Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.
J Phys Chem B. 2016 May 26;120(20):4558-67. doi: 10.1021/acs.jpcb.6b02741. Epub 2016 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验