Suppr超能文献

一种基于匹配追踪的信号复杂度度量方法用于新生儿脑电图分析。

A matching pursuit-based signal complexity measure for the analysis of newborn EEG.

作者信息

Rankine L, Mesbah M, Boashash B

机构信息

Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia.

出版信息

Med Biol Eng Comput. 2007 Mar;45(3):251-60. doi: 10.1007/s11517-006-0143-0. Epub 2007 Jan 13.

Abstract

This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity (RSC), which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact that this new measure is related to the structure, or composition, of the signal under analysis. After a formal definition, the proposed RSC measure is used in the analysis of newborn electroencephalogram (EEG). To do this, firstly, a time-frequency decomposition dictionary is specifically designed to compactly represent the newborn EEG seizure state using MP. We then show, through the analysis of synthetic and real newborn EEG data, that the relative structural complexity measure can indicate changes in EEG structure as it transitions between the two EEG states; namely seizure and background (non-seizure).

摘要

本文提出了一种新的信号复杂度相对度量,在此称为相对结构复杂度(RSC),它基于匹配追踪(MP)分解。所谓“相对”,是指这种新度量高度依赖于MP所使用的分解字典。定义中的“结构”部分表明,这种新度量与所分析信号的结构或组成有关。在给出正式定义后,将所提出的RSC度量用于新生儿脑电图(EEG)分析。为此,首先专门设计了一个时频分解字典,以便使用MP紧凑地表示新生儿EEG癫痫发作状态。然后,通过对合成和真实新生儿EEG数据的分析,我们表明相对结构复杂度度量可以指示EEG在两种EEG状态(即癫痫发作和背景(非癫痫发作))之间转换时其结构的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验