Suppr超能文献

沙门氏菌的运输是由其与内溶酶体系统持续的动态相互作用所定义的。

Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system.

作者信息

Drecktrah Dan, Knodler Leigh A, Howe Dale, Steele-Mortimer Olivia

机构信息

Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.

出版信息

Traffic. 2007 Mar;8(3):212-25. doi: 10.1111/j.1600-0854.2006.00529.x.

Abstract

Following invasion of non-phagocytic host cells, Salmonella enterica survives and replicates within a phagosome-like compartment known as the Salmonella-containing vacuole (SCV). It is now well established that SCV biogenesis, like phagosome biogenesis, involves sequential interactions with the endocytic pathway. However, Salmonella is believed to limit these interactions and, in particular, to avoid fusion of terminal lysosomes with the SCV. In this study, we reassessed this process using a high-resolution live-cell imaging approach and found an unanticipated level of interaction between the SCV and the endocytic pathway. Direct interactions, in which late endosomal/lysosomal content was transferred to SCVs, were detected within 30 min of invasion and continued for several hours. Mechanistically, these interactions were very similar to phagosome-lysosome fusion because they were accompanied by rapid acidification of the SCV, could be blocked by chemical perturbation of microtubules or vacuolar acidification and involved the smallGTPase Rab7. In comparison with vacuoles containing internalized Escherichia coli or heat-killed Salmonella, SCVs did show some delay of fusion and acidification, although, this appeared to be independent of either type III secretion system. These results provide compelling evidence that inhibition of SCV-lysosome fusion is not the major determinant in establishment of the Salmonella replicative niche in epithelial cells.

摘要

在侵入非吞噬性宿主细胞后,肠炎沙门氏菌在一种称为含沙门氏菌液泡(SCV)的吞噬体样区室内存活并复制。现在已经明确,SCV的生物发生与吞噬体的生物发生一样,涉及与内吞途径的一系列相互作用。然而,据信沙门氏菌会限制这些相互作用,尤其是避免晚期溶酶体与SCV融合。在本研究中,我们使用高分辨率活细胞成像方法重新评估了这一过程,发现SCV与内吞途径之间存在意想不到的相互作用水平。在侵入后30分钟内即可检测到晚期内体/溶酶体内容物转移至SCV的直接相互作用,并且这种相互作用持续数小时。从机制上讲,这些相互作用与吞噬体-溶酶体融合非常相似,因为它们伴随着SCV的快速酸化,可被微管或液泡酸化的化学扰动所阻断,并且涉及小GTP酶Rab7。与含有内化大肠杆菌或热灭活沙门氏菌的液泡相比,SCV确实表现出融合和酸化的延迟,尽管这似乎与III型分泌系统无关。这些结果提供了令人信服的证据,表明抑制SCV-溶酶体融合不是沙门氏菌在上皮细胞中建立复制龛的主要决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b4/2063589/1764a2917bcf/tra0008-0212-f1.jpg

相似文献

1
Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system.
Traffic. 2007 Mar;8(3):212-25. doi: 10.1111/j.1600-0854.2006.00529.x.
2
The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth.
Cell Microbiol. 2015 Dec;17(12):1699-720. doi: 10.1111/cmi.12475. Epub 2015 Jul 16.
3
The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells.
EMBO J. 1999 Aug 16;18(16):4394-403. doi: 10.1093/emboj/18.16.4394.
4
Dynein-mediated vesicle transport controls intracellular Salmonella replication.
Mol Biol Cell. 2004 Jun;15(6):2954-64. doi: 10.1091/mbc.e03-08-0614. Epub 2004 Apr 2.
7
Interaction of the Salmonella-containing vacuole with the endocytic recycling system.
J Biol Chem. 2005 Jul 1;280(26):24634-41. doi: 10.1074/jbc.M500358200. Epub 2005 May 10.
9
Role of the ESCRT-III complex in controlling integrity of the Salmonella-containing vacuole.
Cell Microbiol. 2020 Jun;22(6):e13176. doi: 10.1111/cmi.13176. Epub 2020 Feb 20.

引用本文的文献

2
From to Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Typhi.
ACS Omega. 2023 Jul 14;8(29):25674-25697. doi: 10.1021/acsomega.3c02386. eCollection 2023 Jul 25.
3
Endomembrane remodeling and dynamics in infection.
Microb Cell. 2021 Dec 27;9(2):24-41. doi: 10.15698/mic2022.02.769. eCollection 2022 Feb 7.
4
Dysregulated endolysosomal trafficking in cells arrested in the G phase of the host cell cycle impairs vacuolar replication.
Autophagy. 2022 Aug;18(8):1785-1800. doi: 10.1080/15548627.2021.1999561. Epub 2021 Nov 15.
5
Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica.
PLoS Pathog. 2021 Aug 30;17(8):e1009280. doi: 10.1371/journal.ppat.1009280. eCollection 2021 Aug.
6
Comprehensive Single Cell Analyses of the Nutritional Environment of Intracellular .
Front Cell Infect Microbiol. 2021 Mar 23;11:624650. doi: 10.3389/fcimb.2021.624650. eCollection 2021.
8
Macrophage-driven nutrient delivery to phagosomal Staphylococcus aureus supports bacterial growth.
EMBO Rep. 2020 Aug 5;21(8):e50348. doi: 10.15252/embr.202050348. Epub 2020 May 25.
9
Virulence and Immune Escape.
Microorganisms. 2020 Mar 13;8(3):407. doi: 10.3390/microorganisms8030407.
10
The plant-pathogen haustorial interface at a glance.
J Cell Sci. 2020 Mar 4;133(5):jcs237958. doi: 10.1242/jcs.237958.

本文引用的文献

2
Reconstitution of recycling from the phagosomal compartment in streptolysin O-permeabilized macrophages: role of Rab11.
Exp Cell Res. 2006 Jun 10;312(10):1843-55. doi: 10.1016/j.yexcr.2006.02.015. Epub 2006 Mar 24.
3
Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism.
Cell Microbiol. 2006 Mar;8(3):496-507. doi: 10.1111/j.1462-5822.2005.00641.x.
5
Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3.
J Cell Sci. 2005 Nov 15;118(Pt 22):5243-55. doi: 10.1242/jcs.02633. Epub 2005 Oct 25.
6
Formation of a novel surface structure encoded by Salmonella Pathogenicity Island 2.
EMBO J. 2005 Jun 1;24(11):2043-52. doi: 10.1038/sj.emboj.7600676. Epub 2005 May 12.
7
Interaction of the Salmonella-containing vacuole with the endocytic recycling system.
J Biol Chem. 2005 Jul 1;280(26):24634-41. doi: 10.1074/jbc.M500358200. Epub 2005 May 10.
8
Salmonella entry: M cells versus absorptive enterocytes.
Vet Microbiol. 2005 Jun 15;108(1-2):149-52. doi: 10.1016/j.vetmic.2005.04.001.
9
The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages.
Trends Cell Biol. 2005 May;15(5):269-76. doi: 10.1016/j.tcb.2005.03.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验