Paek Hyung, Kogan Yacov, Thomas Prem, Codish Seymour, Krauthammer Michael
Center for Medical Informatics, Yale University School of Medicine, New Haven, USA.
AMIA Annu Symp Proc. 2006;2006:604-8.
In this work, we are measuring the performance of Propbank-based Machine Learning (ML) for automatically annotating abstracts of Randomized Controlled Trials (CTRs) with semantically meaningful tags. Propbank is a resource of annotated sentences from the Wall Street Journal (WSJ) corpus, and we were interested in assessing performance issues when porting this resource to the medical domain. We compare intra-domain (WSJ/WSJ) with cross-domain (WSJ/medical abstract) performance. Although the intra-domain performance is superior, we found a reasonable cross-domain performance.
在这项工作中,我们正在衡量基于Propbank的机器学习(ML)的性能,该机器学习用于使用语义上有意义的标签自动注释随机对照试验(CTR)的摘要。Propbank是来自《华尔街日报》(WSJ)语料库的带注释句子的资源,我们对将此资源移植到医学领域时的性能问题感兴趣。我们比较了域内(WSJ/WSJ)和跨域(WSJ/医学摘要)的性能。虽然域内性能更优,但我们发现跨域性能也较为合理。