Santaolalla Montoya Francisco, Iriondo Bedialauneta Juan Ramón, Aguirre Larracoechea Urko, Martinez Ibargüen Agustin, Sanchez Del Rey Ana, Sanchez Fernandez Jose Maria
ENT Department, Basurto Hospital, School of Medicine, University of the Basque Country, UPV/EHU, Gurtubay, s/n, 48013, Bilbao, Spain.
Eur Arch Otorhinolaryngol. 2007 Jun;264(6):637-43. doi: 10.1007/s00405-006-0241-5. Epub 2007 Jan 26.
We sought to analyze the predictive value of anthropometric, clinical and epidemiological parameters in the identification of patients with suspected OSA, and their relationship with apnoea/hypopnoea respiratory events during sleep. We studied retrospectively 433 patients with OSA, 361 men (83.37%) and 72 women (16.63%), with an average age of +/-47, standard deviation +/-11.10 years (range 18-75 years). The study variables for all of the patients were age, sex, spirometry, neck circumference, body mass index (BMI), Epworth sleepiness scale, nasal examination, pharyngeal examination, collapsibility of the pharynx (Müller Manoeuvre), and apnoea-hypopnoea index (AHI). Age, neck circumference, BMI, Epworth sleepiness scale, pharyngeal examination and pharyngeal collapse were the significant variables. Of the patients, 78% were correctly classified, with a sensitivity of 74.6% and a specificity of 66.3%. We found a direct relationship between the variables analysed and AHI. Based on these results, we obtained the following algorithm to calculate the prediction of AHI for a new patient: AHI = -12.04 + 0.36 neck circumference +2.2286 pharyngeal collapses (MM) + 0.1761 Epworth + 0.0017 BMI x age + 1.1949 pharyngeal examinations. The ratio variance in the number of respiratory events explained by the model was 33% (r2 = 0.33). The variables given in the algorithm are the best ones for predicting the number of respiratory events during sleep in patients studied for suspected OSA. The algorithm proposed may be a good screening method to the identification of patients with OSA.
我们试图分析人体测量学、临床和流行病学参数在识别疑似阻塞性睡眠呼吸暂停(OSA)患者中的预测价值,以及它们与睡眠期间呼吸暂停/低通气呼吸事件的关系。我们回顾性研究了433例OSA患者,其中361例男性(83.37%)和72例女性(16.63%),平均年龄±47岁,标准差±11.10岁(范围18 - 75岁)。所有患者的研究变量包括年龄、性别、肺功能测定、颈围、体重指数(BMI)、爱泼华嗜睡量表、鼻腔检查、咽部检查、咽部可塌陷性(米勒动作)和呼吸暂停低通气指数(AHI)。年龄、颈围、BMI、爱泼华嗜睡量表、咽部检查和咽部塌陷是显著变量。其中78%的患者被正确分类,敏感性为74.6%,特异性为66.3%。我们发现所分析的变量与AHI之间存在直接关系。基于这些结果,我们得到了以下算法来计算新患者的AHI预测值:AHI = -12.04 + 0.36颈围 + 2.2286咽部塌陷(米勒动作)+ 0.1761爱泼华嗜睡量表 + 0.0017 BMI×年龄 + 1.1949咽部检查。该模型解释的呼吸事件数量的方差比例为33%(r2 = 0.33)。算法中给出的变量是预测疑似OSA患者睡眠期间呼吸事件数量的最佳变量。所提出的算法可能是一种识别OSA患者的良好筛查方法。