Suppr超能文献

大肠杆菌酸适应性岛的产物在极低pH值下减轻代谢物应激并介导细胞密度依赖性酸抗性。

Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance.

作者信息

Mates Aaron K, Sayed Atef K, Foster John W

机构信息

Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.

出版信息

J Bacteriol. 2007 Apr;189(7):2759-68. doi: 10.1128/JB.01490-06. Epub 2007 Jan 26.

Abstract

Escherichia coli has an ability, rare among the Enterobacteriaceae, to survive extreme acid stress under various host (e.g., human stomach) and nonhost (e.g., apple cider) conditions. Previous microarray studies have exposed a cluster of 12 genes at 79 centisomes collectively called an acid fitness island (AFI). Four AFI genes, gadA, gadX, gadW, and gadE, were already known to be involved in an acid resistance system that consumes an intracellular proton through the decarboxylation of glutamic acid. However, roles for the other eight AFI gene products were either unknown or subject to conflicting findings. Two new aspects of acid resistance are described that require participation of five of the remaining eight AFI genes. YhiF (a putative regulatory protein), lipoprotein Slp, and the periplasmic chaperone HdeA protected E. coli from organic acid metabolites produced during fermentation once the external pH was reduced to pH 2.5. HdeA appears to handle protein damage caused when protonated organic acids diffuse into the cell and dissociate, thereby decreasing internal pH. In contrast, YhiF- and Slp-dependent systems appear to counter the effects of the organic acids themselves, specifically succinate, lactate, and formate, but not acetate. A second phenomenon was defined by two other AFI genes, yhiD and hdeD, encoding putative membrane proteins. These proteins participate in an acid resistance mechanism exhibited only at high cell densities (>10(8) CFU per ml). Density-dependent acid resistance does not require any demonstrable secreted factor and may involve cell contact-dependent activation. These findings further define the complex physiology of E. coli acid resistance.

摘要

大肠杆菌具有一种在肠杆菌科中罕见的能力,即在各种宿主(如人类胃部)和非宿主(如苹果酒)条件下承受极端酸胁迫。先前的微阵列研究揭示了位于79个厘摩处的一组12个基因,统称为酸适应性岛(AFI)。已知四个AFI基因,即gadA、gadX、gadW和gadE,参与了一种通过谷氨酸脱羧消耗细胞内质子的耐酸系统。然而,其他八个AFI基因产物的作用要么未知,要么存在相互矛盾的研究结果。本文描述了耐酸的两个新方面,这需要其余八个AFI基因中的五个参与。YhiF(一种假定的调节蛋白)、脂蛋白Slp和周质伴侣蛋白HdeA可保护大肠杆菌免受发酵过程中产生的有机酸代谢产物的影响——一旦外部pH降至2.5。HdeA似乎能处理质子化有机酸扩散到细胞内并解离时造成的蛋白质损伤,从而降低细胞内pH。相比之下,YhiF和Slp依赖的系统似乎能对抗有机酸本身的影响,特别是琥珀酸、乳酸和甲酸,但不包括乙酸。另一种现象由另外两个AFI基因yhiD和hdeD定义,它们编码假定的膜蛋白。这些蛋白质参与了一种仅在高细胞密度(每毫升>10^8 CFU)时才表现出不耐酸机制。密度依赖性耐酸不需要任何可证明的分泌因子,可能涉及细胞接触依赖性激活。这些发现进一步明确了大肠杆菌耐酸的复杂生理机制。

相似文献

3
The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli.
Mol Microbiol. 2004 Nov;54(4):948-61. doi: 10.1111/j.1365-2958.2004.04312.x.
6
Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes.
Infect Immun. 2005 Aug;73(8):4993-5003. doi: 10.1128/IAI.73.8.4993-5003.2005.
7
GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12.
Mol Microbiol. 2003 Sep;49(5):1309-20. doi: 10.1046/j.1365-2958.2003.03633.x.
9
HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria.
J Mol Biol. 2000 Jan 21;295(3):605-12. doi: 10.1006/jmbi.1999.3347.
10
Sodium regulates Escherichia coli acid resistance, and influences GadX- and GadW-dependent activation of gadE.
Microbiology (Reading). 2007 Sep;153(Pt 9):3154-3161. doi: 10.1099/mic.0.2007/007575-0.

引用本文的文献

1
The transcriptional response to low temperature is weakly conserved across the .
mSystems. 2024 Dec 17;9(12):e0078524. doi: 10.1128/msystems.00785-24. Epub 2024 Nov 26.
2
Advances in stress-tolerance elements for microbial cell factories.
Synth Syst Biotechnol. 2024 Jun 28;9(4):793-808. doi: 10.1016/j.synbio.2024.06.008. eCollection 2024 Dec.
3
RpoS and the bacterial general stress response.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0015122. doi: 10.1128/mmbr.00151-22. Epub 2024 Feb 27.
4
Fitness trade-offs of multidrug efflux pumps in K-12 in acid or base, and with aromatic phytochemicals.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0209623. doi: 10.1128/aem.02096-23. Epub 2024 Jan 30.
5
Transcriptomic analysis approach towards an improved tolerance of Escherichia coli to gallic acid stress.
Arch Microbiol. 2023 Nov 7;205(12):372. doi: 10.1007/s00203-023-03708-4.
6
Response mechanisms to acid stress promote LF82 replication in macrophages.
Front Cell Infect Microbiol. 2023 Oct 10;13:1255083. doi: 10.3389/fcimb.2023.1255083. eCollection 2023.
7
Pathogenicity assessment of Shiga toxin-producing strains isolated from wild birds in a major agricultural region in California.
Front Microbiol. 2023 Sep 26;14:1214081. doi: 10.3389/fmicb.2023.1214081. eCollection 2023.
8
Widespread density dependence of bacterial growth under acid stress.
iScience. 2023 May 26;26(7):106952. doi: 10.1016/j.isci.2023.106952. eCollection 2023 Jul 21.
9
Acid-tolerant bacteria and prospects in industrial and environmental applications.
Appl Microbiol Biotechnol. 2023 Jun;107(11):3355-3374. doi: 10.1007/s00253-023-12529-w. Epub 2023 Apr 24.
10
The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology.
PLoS Genet. 2023 Mar 17;19(3):e1010672. doi: 10.1371/journal.pgen.1010672. eCollection 2023 Mar.

本文引用的文献

1
Escherichia coli HdeB is an acid stress chaperone.
J Bacteriol. 2007 Jan;189(2):603-10. doi: 10.1128/JB.01522-06. Epub 2006 Nov 3.
5
Contact-dependent inhibition of growth in Escherichia coli.
Science. 2005 Aug 19;309(5738):1245-8. doi: 10.1126/science.1115109.
8
Indole induces the expression of multidrug exporter genes in Escherichia coli.
Mol Microbiol. 2005 Feb;55(4):1113-26. doi: 10.1111/j.1365-2958.2004.04449.x.
9
Escherichia coli acid resistance: tales of an amateur acidophile.
Nat Rev Microbiol. 2004 Nov;2(11):898-907. doi: 10.1038/nrmicro1021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验