Ghosh-Dastidar Samanwoy, Adeli Hojjat, Dadmehr Nahid
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
IEEE Trans Biomed Eng. 2007 Sep;54(9):1545-51. doi: 10.1109/TBME.2007.891945.
A novel wavelet-chaos-neural network methodology is presented for classification of electroencephalograms (EEGs) into healthy, ictal, and interictal EEGs. Wavelet analysis is used to decompose the EEG into delta, theta, alpha, beta, and gamma sub-bands. Three parameters are employed for EEG representation: standard deviation (quantifying the signal variance), correlation dimension, and largest Lyapunov exponent (quantifying the non-linear chaotic dynamics of the signal). The classification accuracies of the following techniques are compared: (1) unsupervised k-means clustering; (2) linear and quadratic discriminant analysis; (3) radial basis function neural network; (4) Levenberg-Marquardt backpropagation neural network (LMBPNN). To reduce the computing time and output analysis, the research was performed in two phases: band-specific analysis and mixed-band analysis. In phase two, over 500 different combinations of mixed-band feature spaces consisting of promising parameters from phase one of the research were investigated. It is concluded that all three key components of the wavelet-chaos-neural network methodology are important for improving the EEG classification accuracy. Judicious combinations of parameters and classifiers are needed to accurately discriminate between the three types of EEGs. It was discovered that a particular mixed-band feature space consisting of nine parameters and LMBPNN result in the highest classification accuracy, a high value of 96.7%.
本文提出了一种新颖的小波-混沌-神经网络方法,用于将脑电图(EEG)分类为健康、发作期和发作间期脑电图。小波分析用于将EEG分解为δ、θ、α、β和γ子带。采用三个参数来表示EEG:标准差(量化信号方差)、关联维数和最大Lyapunov指数(量化信号的非线性混沌动力学)。比较了以下技术的分类准确率:(1)无监督k均值聚类;(2)线性和二次判别分析;(3)径向基函数神经网络;(4)Levenberg-Marquardt反向传播神经网络(LMBPNN)。为了减少计算时间和输出分析,研究分两个阶段进行:特定频段分析和混合频段分析。在第二阶段,研究了由第一阶段研究中有前景的参数组成的500多种不同的混合频段特征空间组合。得出的结论是,小波-混沌-神经网络方法的所有三个关键组件对于提高EEG分类准确率都很重要。需要明智地组合参数和分类器,以准确区分三种类型的EEG。发现由九个参数和LMBPNN组成的特定混合频段特征空间具有最高的分类准确率,高达96.7%。