Suppr超能文献

膳食纤维摄入量与卵巢癌风险:一项前瞻性队列研究。

Dietary fiber intake and ovarian cancer risk: a prospective cohort study.

作者信息

Silvera Stephanie A N, Jain Meera, Howe Geoffrey R, Miller Anthony B, Rohan Thomas E

机构信息

Department of Health and Nutrition Sciences, Montclair State University, 1 Normal Avenue, University Hall, Room 4171, Montclair, NJ 07043, USA.

出版信息

Cancer Causes Control. 2007 Apr;18(3):335-41. doi: 10.1007/s10552-006-0107-6. Epub 2007 Feb 6.

Abstract

There is some evidence from case-control studies that dietary fiber intake might be inversely associated with ovarian cancer risk, but there are limited prospective data. Therefore, we examined ovarian cancer risk in association with intake of dietary fiber in a prospective cohort of 49,613 Canadian women enrolled in the National Breast Screening Study (NBSS), who completed a self-administered food frequency questionnaire between 1980 and 1985. Linkages to national mortality and cancer databases yielded data on deaths and cancer incidence, with follow-up ending between 1998 and 2000. Data from the food frequency questionnaire were used to estimate intake of total dietary fiber, of fiber fractions, and of fiber from various sources. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between energy-adjusted quartile levels of fiber intake and ovarian cancer risk. During a mean 16.4 years of follow-up, we observed 264 incident ovarian cancer cases. Total dietary fiber and fiber fractions were not associated with ovarian cancer risk in this study population.

摘要

病例对照研究有一些证据表明膳食纤维摄入量可能与卵巢癌风险呈负相关,但前瞻性数据有限。因此,我们在参与国家乳腺筛查研究(NBSS)的49613名加拿大女性前瞻性队列中,研究了膳食纤维摄入量与卵巢癌风险的关系。这些女性在1980年至1985年间完成了一份自我填写的食物频率问卷。与国家死亡率和癌症数据库的关联提供了死亡和癌症发病率数据,随访于1998年至2000年间结束。食物频率问卷的数据用于估计总膳食纤维、纤维组分以及来自各种来源的纤维摄入量。采用Cox比例风险模型来估计能量调整后的纤维摄入量四分位数水平与卵巢癌风险之间关联的风险比(HR)和95%置信区间(CI)。在平均16.4年的随访期间,我们观察到264例卵巢癌新发病例。在该研究人群中,总膳食纤维和纤维组分与卵巢癌风险无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验