Suppr超能文献

离体脊髓组织中纤维性星形胶质细胞丝的二次谐波和和频产生成像

Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues.

作者信息

Fu Yan, Wang Haifeng, Shi Riyi, Cheng Ji-Xin

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Biophys J. 2007 May 1;92(9):3251-9. doi: 10.1529/biophysj.106.089011. Epub 2007 Feb 9.

Abstract

Sum frequency generation (SFG) and second harmonic generation (SHG) were observed from helical fibrils in spinal cord white matter isolated from guinea pigs. By combining SFG with coherent anti-Stokes Raman scattering microscopy, which allows visualization of myelinated axons, these fibers were found to be distributed near the surface of the spinal cord, between adjacent axons, and along the blood vessels. Using 20-microm-thick tissue slices, the ratio of forward to backward SHG signal from large bundles was found to be much larger than that from small single fibrils, indicating a phase-matching effect in coherent microscopy. Based on the intensity profiles across fibrils and the size dependence of forward and backward signal from the same fibril, we concluded that the main SHG signal directly originates from the fibrils, but not from surface SHG effects. Further polarization analysis of the SHG signal showed that the symmetry property of the fibril could be well described with a cylindrical model. Colocalization of the SHG signal with two-photon excitation fluorescence (TPEF) from the immunostaining of glial fibrillary acidic protein demonstrated that SHG arises from astroglial filaments. This assignment was further supported by colocalization of the SHG contrast with TPEF signals from astrocyte processes labeled by a Ca(2+) indicator and sulforhodamine 101. This work shows that a combination of three nonlinear optical imaging techniques--coherent anti-Stokes Raman scattering, TPEF, and SHG (SFG) microscopy--allows simultaneous visualization of different structures in a complex biological system.

摘要

在从豚鼠分离出的脊髓白质中的螺旋纤维上观察到了和频产生(SFG)和二次谐波产生(SHG)。通过将SFG与相干反斯托克斯拉曼散射显微镜相结合,后者能够可视化有髓轴突,发现这些纤维分布在脊髓表面附近、相邻轴突之间以及血管周围。使用20微米厚的组织切片,发现来自大束纤维的向前与向后SHG信号的比率远大于来自小单纤维的比率,这表明在相干显微镜中存在相位匹配效应。基于纤维上的强度分布以及同一纤维向前和向后信号的尺寸依赖性,我们得出结论,主要的SHG信号直接源自纤维,而非表面SHG效应。对SHG信号的进一步偏振分析表明,纤维的对称性可以用圆柱模型很好地描述。SHG信号与来自胶质纤维酸性蛋白免疫染色的双光子激发荧光(TPEF)共定位,证明SHG源自星形胶质细胞丝。通过将SHG对比度与来自用Ca(2+)指示剂和磺基罗丹明101标记的星形胶质细胞突起的TPEF信号共定位,进一步支持了这一归属。这项工作表明,相干反斯托克斯拉曼散射、TPEF和SHG(SFG)显微镜这三种非线性光学成像技术的组合能够同时可视化复杂生物系统中的不同结构。

相似文献

1
Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues.
Biophys J. 2007 May 1;92(9):3251-9. doi: 10.1529/biophysj.106.089011. Epub 2007 Feb 9.
2
Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence.
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11014-9. doi: 10.1073/pnas.172368799. Epub 2002 Aug 12.
4
Phase matching of backward second harmonic generation assisted by lattice structure in collagen tissues.
J Biomed Opt. 2015 Oct;20(10):105011. doi: 10.1117/1.JBO.20.10.105011.
5
Interpreting second-harmonic generation images of collagen I fibrils.
Biophys J. 2005 Feb;88(2):1377-86. doi: 10.1529/biophysj.104.047308. Epub 2004 Nov 8.
8
Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
Nano Lett. 2019 Sep 11;19(9):6192-6202. doi: 10.1021/acs.nanolett.9b02239. Epub 2019 Aug 12.
9
Coherent and incoherent SHG in fibrillar cellulose matrices.
Opt Express. 2007 Mar 19;15(6):3348-60. doi: 10.1364/oe.15.003348.
10
Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy.
J Microsc. 2008 Jan;229(Pt 1):32-8. doi: 10.1111/j.1365-2818.2007.01868.x.

引用本文的文献

1
Commercially derived versatile optical architecture for two-photon STED, wavelength mixing and label-free microscopy.
Biomed Opt Express. 2022 Feb 14;13(3):1410-1429. doi: 10.1364/BOE.444525. eCollection 2022 Mar 1.
3
Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23385-23392. doi: 10.1073/pnas.2001861117. Epub 2020 Sep 9.
4
Label-free Optical Imaging of Membrane Potential.
Curr Opin Biomed Eng. 2019 Dec;12:118-125. doi: 10.1016/j.cobme.2019.11.001. Epub 2019 Nov 13.
5
7
New advances in probing cell-extracellular matrix interactions.
Integr Biol (Camb). 2017 May 22;9(5):383-405. doi: 10.1039/c6ib00251j.
8
High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues.
Nat Photonics. 2014;8:627-634. doi: 10.1038/nphoton.2014.145.
9
Measuring microtubule polarity in spindles with second-harmonic generation.
Biophys J. 2014 Apr 15;106(8):1578-87. doi: 10.1016/j.bpj.2014.03.009.
10
Multimodal Nonlinear Optical Microscopy.
Laser Photon Rev. 2011 Jul;5(4). doi: 10.1002/lpor.201000027.

本文引用的文献

1
Deep tissue two-photon microscopy.
Nat Methods. 2005 Dec;2(12):932-40. doi: 10.1038/nmeth818.
2
Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues.
Biophys J. 2005 Jul;89(1):581-91. doi: 10.1529/biophysj.105.061911. Epub 2005 Apr 15.
3
In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
Nat Med. 2005 May;11(5):572-7. doi: 10.1038/nm1229. Epub 2005 Apr 10.
4
Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo.
Nat Methods. 2004 Oct;1(1):31-7. doi: 10.1038/nmeth706. Epub 2004 Sep 29.
5
Interpreting second-harmonic generation images of collagen I fibrils.
Biophys J. 2005 Feb;88(2):1377-86. doi: 10.1529/biophysj.104.047308. Epub 2004 Nov 8.
6
Astrocyte intermediate filaments in CNS pathologies and regeneration.
J Pathol. 2004 Nov;204(4):428-37. doi: 10.1002/path.1645.
8
Calcium dynamics of cortical astrocytic networks in vivo.
PLoS Biol. 2004 Apr;2(4):E96. doi: 10.1371/journal.pbio.0020096. Epub 2004 Apr 13.
9
In vivo multiphoton microscopy of deep brain tissue.
J Neurophysiol. 2004 Apr;91(4):1908-12. doi: 10.1152/jn.01007.2003. Epub 2003 Dec 10.
10
In vivo two-photon calcium imaging of neuronal networks.
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24. doi: 10.1073/pnas.1232232100. Epub 2003 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验