Suppr超能文献

DeoR 型调节因子 SugR 抑制谷氨酸棒杆菌中 ptsG 的表达。

The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum.

作者信息

Engels Verena, Wendisch Volker F

机构信息

Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Muenster, Corrensstr. 3, D-48149 Muenster, Germany.

出版信息

J Bacteriol. 2007 Apr;189(8):2955-66. doi: 10.1128/JB.01596-06. Epub 2007 Feb 9.

Abstract

Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids. Uptake of the preferred carbon source glucose via the phosphoenolpyruvate-dependent phosphotransferase system (PTS) is reduced during coutilization of glucose with acetate, sucrose, or fructose compared to growth on glucose as the sole carbon source. Here we show that the DeoR-type regulator SugR (NCgl1856) represses expression of ptsG, which encodes the glucose-specific PTS enzyme II. Overexpression of sugR resulted in reduced ptsG mRNA levels, decreased glucose utilization, and perturbed growth on media containing glucose. In mutants lacking sugR, expression of the ptsG'-'cat fusion was increased two- to sevenfold during growth on gluconeogenic carbon sources but remained similar during growth on glucose or other sugars. As shown by DNA microarray analysis, SugR also regulates expression of other genes, including ptsS and the putative NCgl1859-fruK-ptsF operon. Purified SugR bound to DNA regions upstream of ptsG, ptsS, and NCgl1859, and a 75-bp ptsG promoter fragment was sufficient for SugR binding. Fructose-6-phosphate interfered with binding of SugR to the ptsG promoter DNA. Thus, while during growth on gluconeogenic carbon sources SugR represses ptsG, ptsG expression is derepressed during growth on glucose or under other conditions characterized by high fructose-6-phosphate concentrations, representing one mechanism which allows C. glutamicum to adapt glucose uptake to carbon source availability.

摘要

谷氨酸棒杆菌能利用多种碳水化合物和有机酸生长。与以葡萄糖作为唯一碳源生长相比,在葡萄糖与乙酸盐、蔗糖或果糖共利用期间,通过磷酸烯醇式丙酮酸依赖性磷酸转移酶系统(PTS)对首选碳源葡萄糖的摄取减少。在此我们表明,DeoR型调节因子SugR(NCgl1856)抑制ptsG的表达,ptsG编码葡萄糖特异性PTS酶II。sugR的过表达导致ptsG mRNA水平降低、葡萄糖利用减少以及在含葡萄糖培养基上生长受到干扰。在缺乏sugR的突变体中,在糖异生碳源上生长期间ptsG'-'cat融合蛋白的表达增加了2至7倍,但在葡萄糖或其他糖类上生长期间保持相似。如DNA微阵列分析所示,SugR还调节其他基因的表达,包括ptsS和假定的NCgl1859-fruK-ptsF操纵子。纯化的SugR与ptsG、ptsS和NCgl1859上游的DNA区域结合,并且一个75bp的ptsG启动子片段足以用于SugR结合。6-磷酸果糖干扰SugR与ptsG启动子DNA的结合。因此,虽然在糖异生碳源上生长期间SugR抑制ptsG,但在葡萄糖上生长期间或在以高6-磷酸果糖浓度为特征的其他条件下ptsG表达去抑制,这代表了一种使谷氨酸棒杆菌能够使葡萄糖摄取适应碳源可用性的机制。

相似文献

1
The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum.
J Bacteriol. 2007 Apr;189(8):2955-66. doi: 10.1128/JB.01596-06. Epub 2007 Feb 9.
7
ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum.
FEMS Microbiol Lett. 2008 Dec;289(1):80-9. doi: 10.1111/j.1574-6968.2008.01370.x.
9
Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2009 May;83(2):315-27. doi: 10.1007/s00253-009-1887-x. Epub 2009 Feb 17.
10
Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR.
Appl Microbiol Biotechnol. 2008 Nov;81(2):291-301. doi: 10.1007/s00253-008-1682-0. Epub 2008 Sep 13.

引用本文的文献

1
Transcriptomics of : metabolism patterns and cellular responses under high-density culture conditions.
Front Bioeng Biotechnol. 2023 Oct 12;11:1274020. doi: 10.3389/fbioe.2023.1274020. eCollection 2023.
3
Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route.
Amino Acids. 2022 Nov;54(11):1437-1450. doi: 10.1007/s00726-022-03174-0. Epub 2022 Oct 13.
4
Role of FruR transcriptional regulator in virulence of Listeria monocytogenes and identification of its regulon.
PLoS One. 2022 Sep 2;17(9):e0274005. doi: 10.1371/journal.pone.0274005. eCollection 2022.
5
Metabolic Engineering of for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid.
Microorganisms. 2022 Mar 29;10(4):730. doi: 10.3390/microorganisms10040730.
7
Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in .
Front Bioeng Biotechnol. 2021 May 28;9:669093. doi: 10.3389/fbioe.2021.669093. eCollection 2021.
8
CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by .
Microorganisms. 2021 Mar 24;9(4):670. doi: 10.3390/microorganisms9040670.
10
Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of With Glucose, Lactate, and Acetate.
Front Bioeng Biotechnol. 2021 Jan 20;8:621213. doi: 10.3389/fbioe.2020.621213. eCollection 2020.

本文引用的文献

3
Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate.
Curr Opin Microbiol. 2006 Apr;9(2):173-9. doi: 10.1016/j.mib.2006.02.002. Epub 2006 Mar 10.
4
A quantitative approach to catabolite repression in Escherichia coli.
J Biol Chem. 2006 Feb 3;281(5):2578-84. doi: 10.1074/jbc.M508090200. Epub 2005 Nov 1.
6
Biotechnological production of amino acids and derivatives: current status and prospects.
Appl Microbiol Biotechnol. 2005 Nov;69(1):1-8. doi: 10.1007/s00253-005-0155-y. Epub 2005 Oct 20.
8
The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.
FEMS Microbiol Rev. 2005 Sep;29(4):765-94. doi: 10.1016/j.femsre.2004.11.002. Epub 2004 Nov 28.
10
Vanillate metabolism in Corynebacterium glutamicum.
Curr Microbiol. 2005 Jul;51(1):59-65. doi: 10.1007/s00284-005-4531-8. Epub 2005 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验